Google C++スタイルガイド 日本語訳
Revision 4.45
背景
C++ is the main development language used by many of Google's open-source projects. As every C++ programmer knows, the language has many powerful features, but this power brings with it complexity, which in turn can make code more bug-prone and harder to read and maintain.
C++はGoogleのオープンソースプロジェクトの多くで使われている主な開発言語です。 C++プログラマのみなさんが知っているとおり、C++は多くの強力な機能を持っていますが、 その力は複雑さをともないます。それによって、コードをバグがより発生しやすくしたり、 読んだり保守することを難しくすることもできます。
The goal of this guide is to manage this complexity by describing in detail the dos and don'ts of writing C++ code. These rules exist to keep the code base manageable while still allowing coders to use C++ language features productively.
このガイドのゴールは、C++のコードを書く上でのべし・べからずの 詳細を記述することで、この複雑さを管理することです。 これらのルールは、C++の言語機能を生産的に使うことを許しつつ、 コードベースを管理可能な状態に保つために存在します。
Style, also known as readability, is what we call the conventions that govern our C++ code. The term Style is a bit of a misnomer, since these conventions cover far more than just source file formatting.
スタイルは、可読性としても知られるように、 わたしたちのC++のコードを律する約束と呼んでいます。 これらの約束は単なるソースファイルのフォーマットより はるかに多くのものをカバーしているため、 スタイルという言葉は少し不適切かもしれません。
One way in which we keep the code base manageable is by enforcing consistency. It is very important that any programmer be able to look at another's code and quickly understand it. Maintaining a uniform style and following conventions means that we can more easily use "pattern-matching" to infer what various symbols are and what invariants are true about them. Creating common, required idioms and patterns makes code much easier to understand. In some cases there might be good arguments for changing certain style rules, but we nonetheless keep things as they are in order to preserve consistency.
コードベースを管理可能に保つ一つの方法は、一貫性を強制することです。 どのプログラマでも他人のコードを読むことができ、 すばやく理解できることはとても重要です。 一定のスタイルを維持しつつ約束を守ることは、 多くのシンボルが何であるか、 それらが満たす不変性が何であるかということを推測するために、 パターンマッチングをより簡単に使うことができます。
Another issue this guide addresses is that of C++ feature bloat. C++ is a huge language with many advanced features. In some cases we constrain, or even ban, use of certain features. We do this to keep code simple and to avoid the various common errors and problems that these features can cause. This guide lists these features and explains why their use is restricted.
このガイドが扱うその他の問題の一つはC++の機能の膨大さです。 C++は多くの応用的な機能をもつ巨大な言語です。 いくつかのケースでは、わたしたちはある程度の機能の使用を制限、 もしくは、禁止にさえします。コードを簡潔に保ち、 様々な共通する誤りやそれらの機能が引き起こす可能性のある問題を避けるために、 このようにしています。このガイドはこれらの機能を一覧にして、 なぜそれらの使用を制限するのかを説明します。
Open-source projects developed by Google conform to the requirements in this guide.
Googleで開発されるオープンソースプロジェクトは このガイドの要件にしたがいます。
Note that this guide is not a C++ tutorial: we assume that the reader is familiar with the language.
このガイドはC++のチュートリアルではないことに注意してください。 C++に親しんでいる読者を想定しています。
ヘッダファイル
In general, every .cc
file should have an
associated .h
file. There are some common
exceptions, such as unittests and
small .cc
files containing just a
main()
function.
一般的に、
各.cc
ファイルは対応する.h
ファイルをもつべきです。
単体テストや
main()
関数だけを含む小さな.cc
ファイルのような、
いくつかの共通する例外は除きます。
Correct use of header files can make a huge difference to the readability, size and performance of your code.
ヘッダファイルを正しく使うことで、 コードの可読性、サイズや性能を大きく変えることができます。
The following rules will guide you through the various pitfalls of using header files.
以下のルールは、 ヘッダファイルを使う上での様々な落とし穴を避けるためのガイドです。
自己完結するヘッダ
Header files should be self-contained and end in .h
. Files that
are meant for textual inclusion, but are not headers, should end in
.inc
. Separate -inl.h
headers are disallowed.
ヘッダーファイルは自己完結しているべきであり、.h
で終わるべきです。
文字列の取り込みを意図したファイルは、ヘッダではありませんが、
.inc
で終わるべきです。
-inl.h
ヘッダに分離することは禁止されています。
All header files should be self-contained. In other words, users and refactoring tools should not have to adhere to special conditions in order to include the header. Specifically, a header should have header guards, should include all other headers it needs, and should not require any particular symbols to be defined.
すべてのヘッダファイルは自己完結しているべきです。言い換えると、 ユーザとリファクタリングツールはヘッダを含めるために 特別な条件をつけるべきではありません。特に、 ヘッダはヘッダガードをもつべきであり、 それが必要とするその他すべてのヘッダを含むべきであり、 これといったシンボルの定義を要求するべきではありません。
There are rare cases where a file is not meant to be self-contained, but
instead is meant to be textually included at a specific point in the code.
Examples are files that need to be included multiple times or
platform-specific extensions that essentially are part of other headers. Such
files should use the file extension .inc
.
あるファイルが自己完結しておらず、その代わりに、
コード中のある特定箇所で文字列として取り込まれることになっているという
特殊なケースがあります。例としては、複数回含める必要があるファイルや、
本質的に他のヘッダの一部であるプラットフォーム固有の拡張です。
そのようなファイルはファイル拡張子.inc
を使うべきです。
If a template or inline function is declared in a .h
file,
define it in that same file. The definitions of these constructs must
be included into every .cc
file that uses them, or the
program may fail to link in some build configurations. Do not move these
definitions to separate -inl.h
files.
もしテンプレートやインライン関数が
.h
ファイルの中で宣言されているのであれば、
同じファイルの中で定義してください。それらを構成する定義は
それらを使う各々の.cc
ファイルに含めなけれいけません。
さもなければ、
いくつかのビルド環境設定ではそのプログラムはリンクに失敗するかもしれません。
-inl.h
ファイルに分離するためにこれらの定義を移動してはいけません。
As an exception, a function template that is explicitly
instantiated for all relevant sets of template arguments, or
that is a private member of a class, may
be defined in the only .cc
file that
instantiates the template.
例外として、
関連するテンプレート引数すべてに対して特殊化された関数テンプレートや、
あるクラスのプライベートメンバである関数テンプレートは、
テンプレートを特殊化する
.cc
ファイルの中でのみ定義されるかもしれません。
#defineガード
All header files should have #define
guards to
prevent multiple inclusion. The format of the symbol name
should be
<PROJECT>_<PATH>_<FILE>_H_
.
すべてのヘッダファイルは複数回の取り込みを防ぐために
#define
ガードをもつべきです。そのシンボル名のフォーマットは、
<PROJECT>_<PATH>_<FILE>_H_
であるべきです。
To guarantee uniqueness, they should
be based on the full path in a project's source tree. For
example, the file foo/src/bar/baz.h
in
project foo
should have the following
guard:
一意性を保証するために、
プロジェクトのソースツリー中のフルパスに基づくべきです。例えば、
プロジェクトfoo
の中にあるファイルfoo/src/bar/baz.h
は以下のガードをもつべきです。
#ifndef FOO_BAR_BAZ_H_ #define FOO_BAR_BAZ_H_ ... #endif // FOO_BAR_BAZ_H_
前方宣言
You may forward declare ordinary classes in order to avoid
unnecessary #include
s.
不要な#include
を回避するために、
普通のクラスを前方宣言しても構いません。
A "forward declaration" is a declaration of a class,
function, or template without an associated definition.
#include
lines can often be replaced with
forward declarations of whatever symbols are actually
used by the client code.
前方宣言とは、対応する定義をもたないクラス、関数、テンプレートの宣言です。
#include
行は、
クライアントコードに実際に使われるどんなシンボルの前方宣言とともに
しばしば置き換えられます。
- Unnecessary
#include
s force the compiler to open more files and process more input. - They can also force your code to be recompiled more often, due to changes in the header.
- 不要な
#include
は、 たくさんのファイルを開いてより多くの入力を処理することを コンパイラに強制します。 - ヘッダー中の変更によって、 もっと頻繁にコードが再コンパイルされることが強いられます。
- It can be difficult to determine the correct form of a forward declaration in the presence of features like templates, typedefs, default parameters, and using declarations.
- It can be difficult to determine whether a forward
declaration or a full
#include
is needed for a given piece of code, particularly when implicit conversion operations are involved. In extreme cases, replacing an#include
with a forward declaration can silently change the meaning of code. - Forward declaring multiple symbols from a header
can be more verbose than simply
#include
ing the header. - Forward declarations of functions and templates can prevent the header owners from making otherwise-compatible changes to their APIs; for example, widening a parameter type, or adding a template parameter with a default value.
- Forward declaring symbols from namespace
std::
usually yields undefined behavior. - Structuring code to enable forward declarations (e.g. using pointer members instead of object members) can make the code slower and more complex.
- The practical efficiency benefits of forward declarations are unproven.
- テンプレート、typedef、デフォルトパラメータ、 そしてusing宣言のような機能の存在の中で、 前方宣言の正しい用法を決めることは難しいかもません。
- 特に暗黙の変換演算子が呼び出されているときには、
与えられたコードの断片に対して
前方宣言か完全な
#include
のどちらが 必要かを決めることは難しいかもしれません。 - あるヘッダで複数の前方宣言は
単純に
#include
でヘッダを含めるより 冗長かもしれません。 - 関数とテンプレートの前方宣言は、 ヘッダの所有者がそれらのAPIに対して 本当であれば互換性のある変更をすることを妨げるかもしれません。 例えば、引数の型を増やしたり、 デフォルト値ありのテンプレートパラメータを追加する変更です。
std::
名前空間からシンボルを前方宣言することは 通常は未定義の動作を引き起こします。- オブジェクトのメンバを使う代わりにポインタメンバを使う例のように、 前方宣言を可能にするためにコードを構造化することは コードをより遅く複雑にします。
- 前方宣言の実用的な効率のメリットは証明されていません。
- When using a function declared in a header file,
always
#include
that header. - When using a class template, prefer to
#include
its header file. - When using an ordinary class, relying on a forward
declaration is OK, but be wary of situations where a
forward declaration may be insufficient or incorrect;
when in doubt, just
#include
the appropriate header. - Do not replace data members with pointers just to
avoid an
#include
.
- ヘッダファイルで宣言された関数を使うときは、
常にそのヘッダファイルを
#include
してください。 - クラステンプレートを使うときは、
そのヘッダファイルを
#include
することを優先してください。 - 普通のクラスを使うときに、前方宣言に頼ることは構いませんが、
前方宣言が間違っていたり非効率的であるかもしれない状況に注意してください。
怪しいときには、そのヘッダを単に
#include
してください。 #include
を避けるためだけに、 データメンバをポインタに置き換えないでください。
Please see Names and Order of Includes for rules about when to #include a header.
ヘッダをインクルードするときのルールについては、 インクルードの名前と順序 を参照してください。
インライン関数
Define functions inline only when they are small, say, 10 lines or less.
10行以下の小さいときだけ関数をインラインとして定義してください。
You can declare functions in a way that allows the compiler to expand them inline rather than calling them through the usual function call mechanism.
通常の関数呼び出し規約を通じて呼び出すより、 インラインに展開することをコンパイラに許可する 関数の宣言方法があります。
Inlining a function can generate more efficient object code, as long as the inlined function is small. Feel free to inline accessors and mutators, and other short, performance-critical functions.
インライン化された関数が小さければ、 関数のインライン化はオブジェクトコードをより効率的に生成します。 アクセッサやミューテータ(読込みメソッドや書込みメソッド)、 短くて性能が重要な関数などで、気軽にインライン化してください。
Overuse of inlining can actually make programs slower. Depending on a function's size, inlining it can cause the code size to increase or decrease. Inlining a very small accessor function will usually decrease code size while inlining a very large function can dramatically increase code size. On modern processors smaller code usually runs faster due to better use of the instruction cache.
インライン化の濫用は実際にはプログラムを遅くします。 関数のサイズにも依存しますが、 インライン化はコードサイズの増減を引き起こすかもしれません。 とても大きい関数のインライン化はコードサイズを劇的に増やす一方で、 とても小さなアクセッサ関数のインライン化はコードサイズを減らすでしょう。 最近のプロセッサでは、命令キャッシュをよりよく使うため、 短いコードほど速く実行します。
A decent rule of thumb is to not inline a function if it is more than 10 lines long. Beware of destructors, which are often longer than they appear because of implicit member- and base-destructor calls!
ちゃんとした経験則は、10行より長い関数はインライン化しないことです。 デストラクタの注意点としては、 暗黙的なメンバであることと基底クラスのデストラクタ呼び出しのため、 見た目より長くなることです。
Another useful rule of thumb: it's typically not cost effective to inline functions with loops or switch statements (unless, in the common case, the loop or switch statement is never executed).
その他に役に立つ経験則としては、 ループやswitch文を含む関数のインライン化は費用対効果が良くありません。 (ほとんどのときにループやswitch文実行されない場合を除きます。)
It is important to know that functions are not always inlined even if they are declared as such; for example, virtual and recursive functions are not normally inlined. Usually recursive functions should not be inline. The main reason for making a virtual function inline is to place its definition in the class, either for convenience or to document its behavior, e.g., for accessors and mutators.
関数がインラインとして宣言されていたとしても、 必ずしもインライン化されないことを知っておくことは重要です。 例えば、仮想関数や再帰関数は通常インライン化されません。 一風変わっている再帰関数はインラインであってはなりません。 仮想関数をインラインにする主な理由は、 クラスの中に定義を置くことか、利便性のためか、 振る舞いを文書化するためです。 その例は、アクセッサとミューテータ(読込みメソッドや書込みメソッド)です。
関数の引数の順序
When defining a function, parameter order is: inputs, then outputs.
関数を定義するときの引数の順序は、入力、それから出力です。
Parameters to C/C++ functions are either input to the
function, output from the function, or both. Input
parameters are usually values or const
references, while output and input/output parameters will
be non-const
pointers. When ordering
function parameters, put all input-only parameters before
any output parameters. In particular, do not add new
parameters to the end of the function just because they
are new; place new input-only parameters before the
output parameters.
C/C++の関数の引数は、
関数への入力か関数からの出力のどちらかか、あるいは両方です。
出力と入出力引数がconst
でないポインタである一方で、
入力引数は通常、値かconst
参照です。
関数の引数を並べるとき、すべての入力のみの引数を出力引数の前に置きます。
特に、新しいからというだけで関数の終わりに新しい引数を追加してはいけません。
その代わりに、新しい入力のみの引数は出力引数の前に置いてください。
This is not a hard-and-fast rule. Parameters that are both input and output (often classes/structs) muddy the waters, and, as always, consistency with related functions may require you to bend the rule.
これは杓子定規ではありません。水が濁ってしまうのと同様に、 (多くの場合クラスや構造体の)入力と出力の両方である引数が、 関連する関数との一貫性のためにルールをねじ曲げることを求めるかもしれません。
インクルードの名前と順序
Use standard order for readability and to avoid hidden
dependencies: Related header, C library, C++ library, other libraries'
.h
, your project's .h
.
可読性のためと隠れた依存関係を避けるために標準的な順序を使いましょう。
対応するヘッダ、Cライブラリ、C++ライブラリ、
その他のライブラリの.h
、
あなたのプロジェクトの.h
の順序です。
All of a project's header files should be
listed as descendants of the project's source
directory without use of UNIX directory shortcuts
.
(the current directory) or ..
(the parent directory). For example,
google-awesome-project/src/base/logging.h
should be included as:
あるプロジェクトのヘッダファイルすべてを、
UNIXのディレクトリショートカット.
(カレントディレクトリ)や
..
(親ディレクトリ)を使わずに、
プロジェクトのソースディレクトリを下りるように並べて書くべきです。
例えば、
google-awesome-project/src/base/logging.h
は次のようにインクルードします。
#include "base/logging.h"
In dir/foo.cc
or
dir/foo_test.cc
, whose main
purpose is to implement or test the stuff in
dir2/foo2.h
, order your includes
as follows:
dir/foo.cc
や
dir/foo_test.cc
の中では、
dir2/foo2.h
の中にあるものを
実装するかテストすることが主な目的です。
したがって、インクルードは次のように並べてください。
dir2/foo2.h
.- C system files.
- C++ system files.
- Other libraries'
.h
files. -
Your project's
.h
files.
dir2/foo2.h
- Cのシステムファイル
- C++のシステムファイル
- その他のライブラリの
.h
ファイル - あなたのプロジェクトの
.h
ファイル
With the preferred ordering, if
dir2/foo2.h
omits any necessary
includes, the build of dir/foo.cc
or dir/foo_test.cc
will break.
Thus, this rule ensures that build breaks show up first
for the people working on these files, not for innocent
people in other packages.
優先順序を守っても、
もしdir2/foo2.h
が必要なインクルードを省略していたら、
dir/foo.cc
や
dir/foo_test.cc
のビルドは壊れてしまうでしょう。
このように、このルールは、
それらのファイルとともに仕事をする人々に対しては
ビルド失敗を最初に明らかにすることを保証してくれますが、
他のパッケージの中で仕事をしている無知な人々に対してはそうではありません。
dir/foo.cc
and
dir2/foo2.h
are usually in the same
directory (e.g. base/basictypes_test.cc
and
base/basictypes.h
), but may sometimes be in different
directories too.
dir/foo.cc
と
dir2/foo2.h
は、
通常同じディレクトリに置かれます。
そのような例としては、
base/basictypes_test.cc
と
base/basictypes.h
です。
しかし、ときどき違うディレクトリに置かれることもあります。
Within each section the includes should be ordered alphabetically. Note that older code might not conform to this rule and should be fixed when convenient.
各セクションの中のインクルードはアルファベット順で並べるべきです。 古いコードはこのルールにしたがっていないかもしれませんが、 都合のよいときに修正するべきです。
You should include all the headers that define the symbols you rely
upon (except in cases of forward
declaration). If you rely on symbols from bar.h
,
don't count on the fact that you included foo.h
which
(currently) includes bar.h
: include bar.h
yourself, unless foo.h
explicitly demonstrates its intent
to provide you the symbols of bar.h
. However, any
includes present in the related header do not need to be included
again in the related cc
(i.e., foo.cc
can
rely on foo.h
's includes).
依存しているシンボルを定義するヘッダはすべてインクルードするべきです
(前方宣言のケースを除きます)。
もしbar.h
のシンボルに依存するのであれば、
bar.h
をインクルードする
foo.h
をインクルードしたことに頼ってはいけません。
foo.h
がbar.h
のシンボルを提供することを明示的に意図している場合を除いて、
bar.h
を自分でインクルードしてください。
しかしながら、関連するヘッダ中にあるインクルードを、
関連するcc
の中で再びインクルードする必要はありません
(例えば、foo.cc
はfoo.h
のインクルードに頼って構いません)。
For example, the includes in
google-awesome-project/src/foo/internal/fooserver.cc
might look like this:
例えば、
google-awesome-project/src/foo/internal/fooserver.cc
の中のインクルードは次のようになります。
#include "foo/server/fooserver.h" #include <sys/types.h> #include <unistd.h> #include <hash_map> #include <vector> #include "base/basictypes.h" #include "base/commandlineflags.h" #include "foo/server/bar.h"
Sometimes, system-specific code needs conditional includes. Such code can put conditional includes after other includes. Of course, keep your system-specific code small and localized. Example:
ときどき、 システム依存のコードは条件付きでインクルードする必要があります。 そのようなコードは、 他のインクルードの後に条件付きのインクルードを置いてください。 もちろん、システム依存のコードは小さく局所的になるようにしましょう。
#include "foo/public/fooserver.h" #include "base/port.h" // For LANG_CXX11. #ifdef LANG_CXX11 #include <initializer_list> #endif // LANG_CXX11
スコープ
名前空間
Unnamed namespaces in .cc
files are
encouraged. With named namespaces, choose the name based on
the
project, and possibly its
path. Do not use a using-directive.
Do not use inline namespaces.
.cc
ファイル中の無名名前空間は推奨されています。
名前つき名前空間はプロジェクトに基づいた名前を選び、できる限りそのパスにしてください。
usingディレクティブは使ってはいけません。インライン名前空間も使ってはいけません。
Namespaces subdivide the global scope into distinct, named scopes, and so are useful for preventing name collisions in the global scope.
名前空間はグローバルなスコープを別々の名前つきスコープに細分化して、 グローバルスコープ中での名前衝突を防ぐのに役に立ちます。
Namespaces provide a (hierarchical) axis of naming, in addition to the (also hierarchical) name axis provided by classes.
クラスによって提供される(階層的な)名前の軸に加えて、 名前空間は(階層的な)名前の軸を提供します。
For example, if two different projects have a class
Foo
in the global scope, these symbols may
collide at compile time or at runtime. If each project
places their code in a namespace,
project1::Foo
and project2::Foo
are now distinct symbols that do not collide.
例えば、
もし二つの異なるプロジェクトがグローバルスコープにクラス
Foo
を持っているのであれば、
それらのシンボルはコンパイル時か実行時に衝突するかもしれません。
もし各プロジェクトがそれらのコードを名前空間の中に入れていれば、
project1::Foo
とproject2::Foo
は異なるシンボルであり、
それらは衝突しない。
Inline namespaces automatically place their names in the enclosing scope. Consider the following snippet, for example:
インライン名前空間は包まれたスコープに名前を自動的に置きます。 例えば、次のスニペットを考えてみましょう。
namespace X { inline namespace Y { void foo(); } }
The expressions X::Y::foo()
and
X::foo()
are interchangeable. Inline
namespaces are primarily intended for ABI compatibility
across versions.
式X::Y::foo()
とX::foo()
はお互いに交換可能です。
インライン名前空間は複数バージョンを横断したABI互換性のために主に使われます。
Namespaces can be confusing, because they provide an additional (hierarchical) axis of naming, in addition to the (also hierarchical) name axis provided by classes.
名前空間は混乱しやすいかもしれません。 なぜならば、クラスで提供される(階層的な)名前の軸に加えて、 (階層的な)名前の軸を追加で提供するからです。
Inline namespaces, in particular, can be confusing because names aren't actually restricted to the namespace where they are declared. They are only useful as part of some larger versioning policy.
インライン名前空間は、特に混乱しやすいかもしれません。 なぜならば、名前が宣言された名前空間に実際には制限されないからです。 より大きなバージョニングポリシーの一部分としてのみ役に立つでしょう。
Use of unnamed namespaces in header files can easily cause violations of the C++ One Definition Rule (ODR).
ヘッダファイル中での無名名前空間を使用はC++の単一定義規則(ODR) の違反を簡単に引き起こすでしょう。
Use namespaces according to the policy described below. Terminate namespaces with comments as shown in the given examples.
以下に記述したポリシーにしたがって名前空間を使いましょう。 例の中で示されているように、名前空間をコメントとともに終えるようにしてください。
無名名前空間
-
Unnamed namespaces are allowed and even encouraged in
.cc
files, to avoid link time naming conflicts:namespace { // This is in a .cc file. // The content of a namespace is not indented. // // This function is guaranteed not to generate a colliding symbol // with other symbols at link time, and is only visible to // callers in this .cc file. bool UpdateInternals(Frobber* f, int newval) { ... } } // namespace
However, file-scope declarations that are associated with a particular class may be declared in that class as types, static data members or static member functions rather than as members of an unnamed namespace.
- Do not use unnamed namespaces in
.h
files.
-
リンク時の名前衝突を避けるために、
.cc
ファイルの中では 無名名前空間は使っても構いませんし推奨されてさえいます。namespace { // .ccファイルの中です // 無名名前空間の中身はインデントされません。 // // この関数は、この.ccファイルの中からしか呼び出せませんし、 // リンク時に他のシンボルと衝突するようなシンボルを生成しないことが // 保証されてます。 bool UpdateInternals(Frobber* f, int newval) { ... } } // namespace
しかしながら、 ある特定のクラスに対応するファイルスコープでの宣言は、 無名名前空間のメンバとしてよりも、 そのクラス中のメンバ(型や静的データメンバ、静的メンバ関数) として宣言されるかもしれません。
.h
ファイルの中で無名名前空間を使ってはいけません。
名前つき名前空間
Named namespaces should be used as follows:
名前つき名前空間は次のように使ってください。
-
Namespaces wrap the entire source file after includes, gflags definitions/declarations, and forward declarations of classes from other namespaces:
// In the .h file namespace mynamespace { // All declarations are within the namespace scope. // Notice the lack of indentation. class MyClass { public: ... void Foo(); }; } // namespace mynamespace
// In the .cc file namespace mynamespace { // Definition of functions is within scope of the namespace. void MyClass::Foo() { ... } } // namespace mynamespace
The typical
.cc
file might have more complex detail, including the need to reference classes in other namespaces.#include "a.h" DEFINE_bool(someflag, false, "dummy flag"); class C; // Forward declaration of class C in the global namespace. namespace a { class A; } // Forward declaration of a::A. namespace b { ...code for b... // Code goes against the left margin. } // namespace b
- Do not declare anything in namespace
std
, not even forward declarations of standard library classes. Declaring entities in namespacestd
is undefined behavior, i.e., not portable. To declare entities from the standard library, include the appropriate header file. You may not use a using-directive to make all names from a namespace available.
// Forbidden -- This pollutes the namespace. using namespace foo;
You may use a using-declaration anywhere in a
.cc
file, and in functions, methods or classes in.h
files.// OK in .cc files. // Must be in a function, method or class in .h files. using ::foo::bar;
Namespace aliases are allowed anywhere in a
.cc
file, anywhere inside the named namespace that wraps an entire.h
file, and in functions and methods.// Shorten access to some commonly used names in .cc files. namespace fbz = ::foo::bar::baz; // Shorten access to some commonly used names (in a .h file). namespace librarian { // The following alias is available to all files including // this header (in namespace librarian): // alias names should therefore be chosen consistently // within a project. namespace pd_s = ::pipeline_diagnostics::sidetable; inline void my_inline_function() { // namespace alias local to a function (or method). namespace fbz = ::foo::bar::baz; ... } } // namespace librarian
Note that an alias in a .h file is visible to everyone #including that file, so public headers (those available outside a project) and headers transitively #included by them, should avoid defining aliases, as part of the general goal of keeping public APIs as small as possible.
- Do not use inline namespaces.
-
名前空間は、インクルード、 gflagsの定義/宣言、 他の名前空間にあるクラスの前方宣言の後ろのソースファイル全体を包みます。
// .hファイル namespace mynamespace { // すべての宣言を名前空間のスコープの中に入れます。 // インデントがないことに注意してください。 class MyClass { public: ... void Foo(); }; } // namespace mynamespace
// .ccファイル namespace mynamespace { // 関数の定義は名前空間のスコープの中に入れます。 void MyClass::Foo() { ... } } // namespace mynamespace
典型的な
.cc
ファイルはより複雑で、 他の名前空間にあるクラスを参照する必要があるかもしれません。#include "a.h" DEFINE_bool(someflag, false, "dummy flag"); class C; // グローバル空間の中でクラスCの前方宣言 namespace a { class A; } // a::Aの前方宣言 namespace b { ...code for b... // 左側の余白に沿ってコードを書く。 } // namespace b
std
名前空間の中で何かを宣言してはいけません。 たとえ標準ライブラリのクラスの前方宣言であったとしても同様です。std
名前空間に何かを宣言することは未定義の振舞い、 すなわち、移植性がありません。 標準ライブラリから何かを宣言するためには、 適切なヘッダファイルをインクルードしてください。usingディレクティブ はある名前空間からすべての名前を利用可能にするため使ってはいけません。
// 禁止 -- これは名前空間を汚染します using namespace foo;
using宣言は、
.cc
ファイルの中のどこでもと、.h
ファイルの中の関数、メソッド、クラスの中で 使っても構いません。// .ccファイルの中はどこでもOKです // .hファイルの中は関数かメソッド、クラスの中でないといけません using ::foo::bar;
名前空間の別名は、
.cc
ファイルの中のどこでもと、.h
ファイル全体を包んでいる名前つき名前空間の中のどこでも、 関数とメソッドの中で、使っても構いません。// .ccファイルの中でよく使われる名前を短く利用 namespace fbz = ::foo::bar::baz; // .hファイルの中でよく使われる名前を短く利用 namespace librarian { // 次の別名はこのヘッダファイル(librarian名前空間の中)を // インクルードするすべてのファイルで利用可能です。 // したがって、別名はプロジェクト内で矛盾なく選ぶべきです。 namespace pd_s = ::pipeline_diagnostics::sidetable; inline void my_inline_function() { // 関数やメソッド内の名前空間の別名 namespace fbz = ::foo::bar::baz; ... } } // namespace librarian
.h
ファイルの中での別名は、 そのファイルをインクルードしたすべての場所で 見えるようになることに注意してください。 したがって、 パブリックなAPIをできるだけ小さく保つという一般的な目標の一環として、 パブリックなヘッダ(そのプロジェクトの外で利用可能なもの)と、 それらによって推移的にインクルードされるヘッダは、 別名を定義することを避けるべきです。- インライン名前空間は使ってはいけません。
ネストされたクラス
A class can define another class within it; this is also called a member class.
クラスはその他のクラスの中に定義することもできます。 これはメンバクラスとも呼ばれます。
class Foo { private: // Bar is a member class, nested within Foo. class Bar { ... }; };
class Foo { private: // Barはメンバクラスで、Fooの中にネストされています。 class Bar { ... }; };
This is useful when the nested (or member) class is only
used by the enclosing class; making it a member puts it
in the enclosing class scope rather than polluting the
outer scope with the class name. Nested classes can be
forward declared within the enclosing class and then
defined in the .cc
file to avoid including
the nested class definition in the enclosing class
declaration, since the nested class definition is usually
only relevant to the implementation.
ネストされたクラス(か、メンバクラス)が
包んでいるクラスの中でのみ使われるときに役に立ちます。
メンバにすることでクラス名で外側のスコープを汚染するのではなく、
包んでいるクラスのスコープに限定することができます。
ネストされたクラスの定義は通常実装にしか関連がないので、
包んでいるクラスの中でネストされたクラスを定義することを避けるために、
ネストされたクラスは包んでいるクラスの中で前方宣言して
.cc
ファイルの中で定義されるかもしれません。
Nested classes can be forward-declared only within the
definition of the enclosing class. Thus, any header file
manipulating a Foo::Bar*
pointer will have
to include the full class declaration for
Foo
.
ネストされたクラスは包んでいるクラスの定義の中でしか
前方宣言することができません。したがって、
Foo::Bar*
ポインタを操作する任意のヘッダファイルは、
クラスFoo
の完全な定義をインクルードしなければならないでしょう。
Do not make nested classes public unless they are actually part of the interface, e.g., a class that holds a set of options for some method.
実際にインタフェースの一部分である場合 (例えば、いくつかのメソッドのためのオプションの集合をもつクラス)を除いて、 ネストされたクラスをパブリックにしてはいけません。
非メンバ関数と静的メンバ関数とグローバル関数
Prefer nonmember functions within a namespace or static member functions to global functions; use completely global functions rarely.
グローバル関数よりも名前空間に入った非メンバ関数か静的メンバ関数を優先してください。 完全なグローバル関数を使うことはまれです。
Nonmember and static member functions can be useful in some situations. Putting nonmember functions in a namespace avoids polluting the global namespace.
非メンバ関数と静的メンバ関数はいくつかの状況で役立ちます。 非メンバ関数を名前空間に入れることでグローバル名前空間を汚染することを避けることができます。
Nonmember and static member functions may make more sense as members of a new class, especially if they access external resources or have significant dependencies.
特に、外部リソースにアクセスしたり重要な依存関係を持っているような場合には、 非メンバ関数と静的メンバ関数は新しいクラスのメンバとした方がよいかもしれません。
Sometimes it is useful, or even necessary, to define a function not bound to a class instance. Such a function can be either a static member or a nonmember function. Nonmember functions should not depend on external variables, and should nearly always exist in a namespace. Rather than creating classes only to group static member functions which do not share static data, use namespaces instead.
あるクラスのインスタンスに限らず関数を定義することは、 ときどき役に立ちますし、必要であることさえあります。 その関数は静的メンバ関数か非メンバ関数のどちらかかもしれません。 非メンバ関数は外部変数に依存するべきではありませんし、 ほぼ常に名前空間の中にあるべきです。 静的なデータを共有しない静的メンバ関数をまとめるためだけにクラスを作りよりも、 名前空間を代わりに使ってください。
Functions defined in the same compilation unit as production classes may introduce unnecessary coupling and link-time dependencies when directly called from other compilation units; static member functions are particularly susceptible to this. Consider extracting a new class, or placing the functions in a namespace possibly in a separate library.
同じ翻訳単位の中で製品用のクラスとして定義された関数は、 他の翻訳単位から直接呼ばれたときに、 不要な結合とリンク時の依存関係をもちこむかもしれません。 静的メンバ関数はこれを部分的に受け入れます。 新しいクラスに抽出する、もしくは、 その関数を名前空間か可能であれば分離したライブラリの中に置くことを検討してください。
ローカル変数
Place a function's variables in the narrowest scope possible, and initialize variables in the declaration.
関数の変数は可能な限り狭いスコープの中において、 宣言と同時に初期化してください。
C++ allows you to declare variables anywhere in a function. We encourage you to declare them in as local a scope as possible, and as close to the first use as possible. This makes it easier for the reader to find the declaration and see what type the variable is and what it was initialized to. In particular, initialization should be used instead of declaration and assignment, e.g.:
C++では関数の中のどこでも変数を宣言することができます。 できる限りローカルなスコープで、そして、 できる限り最初に使う場所の近くで変数を宣言することを推奨します。 これよって読み手が宣言を見つけやすく、その変数の型が何であるか、 何で初期化されたかが分かりやすくなります。 特に、初期化は宣言と代入の代わりに使われるべきです。例えば、
int i; i = f(); // Bad -- initialization separate from declaration.
int i; i = f(); // 悪い -- 初期化が宣言と分離しています。
int j = g(); // Good -- declaration has initialization.
int j = g(); // 良い -- 宣言と同時に初期化しています。
vector<int> v; v.push_back(1); // Prefer initializing using brace initialization. v.push_back(2);
vector<int> v; v.push_back(1); // ブレース初期化による初期化を優先してください。 v.push_back(2);
vector<int> v = {1, 2}; // Good -- v starts initialized.
vector<int> v = {1, 2}; // 良い -- vは初期化で始まっています。
Variables needed for if
, while
and for
statements should normally be declared
within those statements, so that such variables are confined
to those scopes. E.g.:
if
やwhile
、
for
文に必要な変数は通常は文の中で宣言されるべきであり、
そのような変数はそれらのスコープに閉じ込められます。例えば、
while (const char* p = strchr(str, '/')) str = p + 1;
There is one caveat: if the variable is an object, its constructor is invoked every time it enters scope and is created, and its destructor is invoked every time it goes out of scope.
注意が一つあります。もしその変数がオブジェクトならば、 そのコンストラクタはそのスコープに入る度に実行され、作成され、 スコープの外に出る度にそのデストラクタが実行されます。
// Inefficient implementation: for (int i = 0; i < 1000000; ++i) { Foo f; // My ctor and dtor get called 1000000 times each. f.DoSomething(i); }
// 効率の悪い実装: for (int i = 0; i < 1000000; ++i) { Foo f; // コンストラクタとデストラクタがそれぞれ1000000回ずつ呼び出されます。 f.DoSomething(i); }
It may be more efficient to declare such a variable used in a loop outside that loop:
ループの中でそのように使われる変数は、 そのループの外で宣言する方がより効率的かもしれません。
Foo f; // My ctor and dtor get called once each. for (int i = 0; i < 1000000; ++i) { f.DoSomething(i); }
Foo f; // コンストラクタとデストラクタはそれぞれ一度だけ呼び出されます。 for (int i = 0; i < 1000000; ++i) { f.DoSomething(i); }
静的変数とグローバル変数
Static or global variables of class type are forbidden:
they cause hard-to-find bugs due to indeterminate order of
construction and destruction. However, such variables are
allowed if they are constexpr
: they have no
dynamic initialization or destruction.
クラス型の静的変数かグローバル変数は禁止されています。
それらは初期化と破棄の順序が決まっていないため見つけにくいバグを引き起こします。
しかしながら、constexpr
のような変数は許可されています。
それらは動的な初期化と破棄をもちません。
Objects with static storage duration, including global variables, static variables, static class member variables, and function static variables, must be Plain Old Data (POD): only ints, chars, floats, or pointers, or arrays/structs of POD.
グローバル変数、静的変数、静的クラスメンバ変数、 関数の静的変数を含めた、静的な記憶域期間をもつオブジェクトは、 Plain Old Data(POD)でなければなりません。 int、char、float、ポインタ、PODの配列もしくは構造体のみがPODです。
The order in which class constructors and initializers for static variables are called is only partially specified in C++ and can even change from build to build, which can cause bugs that are difficult to find. Therefore in addition to banning globals of class type, we do not allow static POD variables to be initialized with the result of a function, unless that function (such as getenv(), or getpid()) does not itself depend on any other globals. (This prohibition does not apply to a static variable within function scope, since its initialization order is well-defined and does not occur until control passes through its declaration.)
静的変数として呼び出されたときのクラスのコンストラクタと初期化子の順序は、 C++では部分的にしか決まっておらず、ビルドごとに変わる可能性さえあります。 これは見つけにくいバグを引き起こします。 したがって、クラス型のグローバル変数の禁止に加えて、 その他のグローバル変数に依存しない関数(getenv()やgetpid()のような関数)でない限り、 関数の戻り値で初期化する静的なPOD変数も許可しません。 (初期化の順序がちゃんと定義されていて、その宣言を通過するまで発生しないので、 この制限は関数スコープ内での静的変数には適用しません。)
Likewise, global and static variables are destroyed
when the program terminates, regardless of whether the
termination is by returning from main()
or
by calling exit()
. The order in which
destructors are called is defined to be the reverse of
the order in which the constructors were called. Since
constructor order is indeterminate, so is destructor
order. For example, at program-end time a static variable
might have been destroyed, but code still running
— perhaps in another thread
— tries to access it and fails. Or the
destructor for a static string
variable
might be run prior to the destructor for another variable
that contains a reference to that string.
同じように、
プログラムがmain()
から戻って停止したか
exit()
を呼び出して停止したかのどちらであるかに関係なく、
グローバル変数と静的変数はプログラムが停止したときに破棄されます。
デストラクタが呼び出される順序はコンストラクタが呼び出された順序と反対の順序であると定義されています。
コンストラクタの順序は不定なので、デストラクタの順序も不定です。
例えば、プログラムの終了時に静的変数が破棄されるかもしれませんが、
(おそらくその他のスレッドで)まだ実行されているコードはそれにアクセスしようとして失敗します。
あるいは、静的なstring
変数のデストラクタは、
そのstringへの参照をもつその他の変数のデストラクタより優先して実行されるかもしれません。
One way to alleviate the destructor problem is to
terminate the program by calling
quick_exit()
instead of exit()
.
The difference is that quick_exit()
does not
invoke destructors and does not invoke any handlers that
were registered by calling atexit()
. If you
have a handler that needs to run when a program
terminates via quick_exit()
(flushing logs,
for example), you can register it using
at_quick_exit()
. (If you have a handler that
needs to run at both exit()
and
quick_exit()
, you need to register it in
both places.)
このデストラクタ問題を軽減する一つの方法はexit()
の代わりに
quick_exit()
を呼び出してプログラムを停止することです。
その違いは、quick_exit()
はデストラクタを実行せず、
atexit()
を呼び出して登録されたハンドラも実行しないということです。
もしquick_exit()
を経由してプログラムを停止するときに
実行する必要があるハンドラがあるのであれば(例えば、ログのフラッシュ)、
at_quick_exit()
を使って登録することができます。
(もしexit()
とquick_exit()
の両方で実行する必要があるハンドラがあるのであれば、
両方で登録する必要があります。)
As a result we only allow static variables to contain
POD data. This rule completely disallows
vector
(use C arrays instead), or
string
(use const char []
).
結果として、PODデータを含む静的変数のみを許可します。
このルールはvector
(代わりにCの配列を使う)や
string
(const char []
を使う)を完全に禁止します。
If you need a static or global variable of a class type, consider initializing a pointer (which will never be freed), from either your main() function or from pthread_once(). Note that this must be a raw pointer, not a "smart" pointer, since the smart pointer's destructor will have the order-of-destructor issue that we are trying to avoid.
もしクラス型の静的変数やグローバル変数が必要なのであれば、 main()関数かpthread_once()関数から、 (解放されることのない)ポインタを初期化することを検討してください。 スマートポインタのデストラクタは回避しようとしているデストラクタの実行順序の問題をもつので、 これはスマートポインタではなく生ポインタでなければならないことに注意してください。
クラス
Classes are the fundamental unit of code in C++. Naturally, we use them extensively. This section lists the main dos and don'ts you should follow when writing a class.
クラスはC++のコードの基本的な単位です。 もちろん、わたしたちはそれらを広範囲にわたって使います。 この章では、あなたがクラスを書くときにしたがうべき 主なべし・べからずを列挙しています。
コンストラクタで行なう仕事
Avoid doing complex initialization in constructors (in particular, initialization that can fail or that requires virtual method calls).
複雑な初期化をコンストラクタで行なうのは避けましょう。 (特に、失敗するかもしれない初期化や、仮想関数呼び出しが必要な初期化です。)
It is possible to perform initialization in the body of the constructor.
コンストラクタの中で初期化を実行することができます。
Convenience in typing. No need to worry about whether the class has been initialized or not.
タイピングが楽です。 クラスが初期化されているかどうかを気にする必要がありません。
The problems with doing work in constructors are:
コンストラクタで仕事を行なうときの問題点は次のとおりです。
- There is no easy way for constructors to signal errors, short of using exceptions (which are forbidden).
- If the work fails, we now have an object whose initialization code failed, so it may be an indeterminate state.
- If the work calls virtual functions, these calls will not get dispatched to the subclass implementations. Future modification to your class can quietly introduce this problem even if your class is not currently subclassed, causing much confusion.
- If someone creates a global variable of this type
(which is against the rules, but still), the
constructor code will be called before
main()
, possibly breaking some implicit assumptions in the constructor code. For instance, gflags will not yet have been initialized.
- (禁止されている)例外を使うことを除いて、 コンストラクタからエラーを伝える簡単な方法はありません。
- もしその仕事が失敗したら、 初期化コードが失敗したオブジェクトをもつことになり、 不定な状態になるかもしれません。
- もしその仕事が仮想関数を呼び出したとしても、 その呼び出しはサブクラスの実装へディスパッチされません。 あなたのクラスがいまはサブクラス化されていなかったとしても、 そのクラスへの将来の変更がこの問題を静かにもたらすかもしれません。 そして、大きな混乱を引き起こします。
- もしだれかがこの型のグローバル変数を作ったら
(ルールに反しますが、それでも)、
コンストラクタのコードは
main()
の前に呼び出され、 コンストラクタのコードの中の暗黙の仮定を破壊するでしょう。 例えば、gflags はまだ初期化されていないでしょう。
Constructors should never call virtual functions or
attempt to raise non-fatal failures. If your object requires
non-trivial initialization, consider using
a factory function or Init()
method.
コンストラクタは決して仮想関数を呼び出したり、
致命的でない失敗を起こそうと試みるべきではありません。
もしオブジェクトが自明でない初期化を必要とするのであれば、
ファクトリ関数かInit()
メソッドを検討してください。
初期化
If your class defines member variables, you must provide an in-class initializer for every member variable or write a constructor (which can be a default constructor). If you do not declare any constructors yourself then the compiler will generate a default constructor for you, which may leave some fields uninitialized or initialized to inappropriate values.
もしクラスでメンバ変数を定義するのであれば、 各メンバ変数のためにクラス内の初期化子を提供するか、 コンストラクタを書かなければいけません。 (それはデフォルトコンストラクタかもしれません)。 もしコンストラクタを一つも宣言しないのであれば、 コンパイラはデフォルトコンストラクタを生成してくれるでしょうが、 いくつかのフィールドが未初期化であるか、 不適切な値で初期化された状態にするかもしれません。
The default constructor is called when we
new
a class object with no arguments. It is always
called when calling new[]
(for arrays). In-class
member initialization means declaring a member variable using a
construction like int count_ = 17;
or
string name_{"abc"};
, as opposed to just
int count_;
or string name_;
.
引数なしでクラスオブジェクトに対してnew
演算子を適用したとき、デフォルトコンストラクタが呼び出されます。
配列に対してnew[]
を呼び出すときも常に呼び出されます。
クラス内メンバ初期化は、
ただのint count_;
やstring name_;
に対して、
int count_ = 17;
やstring name_{"doc"};
のような構文を使ってメンバ変数を宣言することです。
A user-defined default constructor is used to initialize an object if no initializer is provided. It can ensure that an object is always in a valid and usable state as soon as it's constructed; it can also ensure that an object is initially created in an obviously "impossible" state, to aid debugging.
ユーザ定義のデフォルトコンストラクタは 初期化子が一つもないときにオブジェクトを初期化するために使われます。 それは、構築されるとすぐにオブジェクトが常に正しく使える状態であることを保証してくれます。 また、デバッグを支援するために、 オブジェクトが明らかに不可能な状態で最初に作られることも保証してくれます。
In-class member initialization ensures that a member variable will be initialized appropriately without having to duplicate the initialization code in multiple constructors. This can reduce bugs where you add a new member variable, initialize it in one constructor, and forget to put that initialization code in another constructor.
クラス内メンバ初期化は、 複数のコンストラクタで初期化コードが重複することなく、 メンバ変数が適切に初期化されることを保証してくれます。 これは、新しいメンバ変数を追加して、それを一つのコンストラクタで初期化して、 その他のコンストラクタに初期化コードを書くのを忘れてしまうようなバグを減らせます。
Explicitly defining a default constructor is extra work for you, the code writer.
デフォルトコンストラクタを明示的に定義することは あなたやコードを書く人にとって余分な仕事です。
In-class member initialization is potentially confusing if a member variable is initialized as part of its declaration and also initialized in a constructor, since the value in the constructor will override the value in the declaration.
もしメンバ変数が宣言の一部分として初期化されるとともにコンストラクタでも初期化されるのであれば、 コンストラクタ内での値が宣言の値で上書きされるので、 クラス内メンバ初期化はもしかすると混乱します。
Use in-class member initialization for simple initializations, especially when a member variable must be initialized the same way in more than one constructor.
あるメンバ変数が一つ以上のコンストラクタで同じように初期化されなければいけないときは特に、 簡単な初期化のためにクラス内メンバ初期化を使ってください。
If your class defines member variables that aren't initialized in-class, and if it has no other constructors, you must define a default constructor (one that takes no arguments). It should preferably initialize the object in such a way that its internal state is consistent and valid.
もしあなたのクラスがクラス内初期化されないメンバ変数を定義し、 かつ、コンストラクタが一つもないのであれば、 (引数のない)デフォルトコンストラクタを定義しなければいけません。 なるべく内部状態が矛盾なく正しくなるような方法でオブジェクトを初期化するべきです。
The reason for this is that if you have no other constructors and do not define a default constructor, the compiler will generate one for you. This compiler generated constructor may not initialize your object sensibly.
コンストラクタが一つもなくデフォルトコンストラクタを定義しないのであれば、 コンパイラが生成してくれることが、その理由です。 コンパイラが生成したコンストラクタは気の利いた初期化してくれないかもしれません。
If your class inherits from an existing class but you add no new member variables, you are not required to have a default constructor.
もしクラスが既存のクラスから派生してもメンバ変数を追加しないのであれば、 デフォルトコンストラクタを提供する必要はありません。
明示的なコンストラクタ
Use the C++ keyword explicit
for constructors
callable with one argument.
1つの引数で呼び出し可能なコンストラクタにはC++のキーワード
explicit
を使いましょう。
Normally, if a
constructor can be called with one argument, it can be used as a
conversion. For instance, if you define
Foo::Foo(string name)
and then pass a string
to a function that expects a Foo
, the
constructor will be called to convert the string into a
Foo
and will pass the Foo
to
your function for you. This can be convenient but is also
a source of trouble when things get converted and new
objects created without you meaning them to. Declaring a
constructor explicit
prevents it from being
invoked implicitly as a conversion.
通常、もしあるコンストラクタが1つの引数で呼び出すことができるのであれば、
それを変換に使うことができます。例えば、もしあなたがFoo::Foo(string name)
を定義して、Foo
を期待する関数に文字列を渡したら、
あなたのために文字列をFoo
に変換するためにそのコンストラクタを呼び出してから
Foo
をあなたの関数に渡すでしょう。
これは便利ですが、意図せず新しいオブジェクトが作られたり何かが変換されるときにトラブルの元になります。
explicit
をつけてコンストラクタを宣言することで暗黙の変換を避けることができます。
In addition to single-parameter constructors, this also
applies to constructors where every parameter after the
first has a default value, e.g.,
Foo::Foo(string name, int id = 42)
.
単一引数のコンストラクタに加えて、 これは最初の引数のあとの各引数がデフォルト値をもつコンストラクタにも適用されます。
Avoids undesirable conversions.
望ましくない変換を回避します。
None.
ありません。
We require all constructors that are callable with
a single argument to be
explicit. Always put explicit
in front of
such constructors in the class definition:
explicit Foo(string name);
単一引数で呼び出し可能なすべてのコンストラクタが明示的であることを求めます。
クラス定義の中でそのようなコンストラクタの前にexplicit
を常につけてください。
explicit Foo(string name);
Copy and move constructors are exceptions: they should not be
explicit
. Classes that are intended to be transparent
wrappers around other classes are also exceptions.
Such exceptions should be clearly marked with
comments.
コピーコンストラクタとムーブコンストラクタは例外です。
それらはexplicit
であるべきではありません。
周辺の他のクラスの透過的なラッパーであることを意図したクラスも例外です。
そのような例外はコメントに明らかな印をつけるべきです。
Finally, constructors that take only a
std::initializer_list
may be non-explicit. This permits
construction of your type from a braced initializer list, as in an assignment-style initialization,
function argument, or return statement. For example:
最後に、std::initializer_list
のみを引数にとるコンストラクタは明示的ではないかもしれません。
これは、代入スタイルでの初期化や、関数の引数、return文として、
初期化子リストからの型を構築を許可します。
例えば、次のようなものです。
MyType m = {1, 2}; MyType MakeMyType() { return {1, 2}; } TakeMyType({1, 2});
コピー可能な型とムーブ可能な型
Support copying and/or moving if it makes sense for your type. Otherwise, disable the implicitly generated special functions that perform copies and moves.
コピーやムーブがあなたの型にとって意味があるならサポートしてください。 そうでないのなら、 暗黙的に生成される特別なコピーやムーブを実行する関数を無効化してください。
A copyable type allows its objects to be initialized or assigned
from any other object of the same type, without changing the value of the source.
For user-defined types, the copy behavior is defined by the copy
constructor and the copy-assignment operator.
string
is an example of a copyable type.
コピー可能な型は、オブジェクト自身が、コピー元の値を変更することなく、
同じ型をもつ他のどのオブジェクトからでも初期化や代入されることを許可します。
ユーザ定義型に対しては、
コピーの振る舞いはコピーコンストラクタとコピー代入演算子で定義されます。
string
はコピー可能な型の例です。
A movable type is one that can be initialized and assigned
from temporaries (all copyable types are therefore movable).
std::unique_ptr<int>
is an example of a movable but not
copyable type. For user-defined types, the move behavior is defined by the move
constructor and the move-assignment operator.
ムーブ可能な型は、一時オブジェクトからの初期化や代入が可能です。
(したがって、すべてのコピー可能な型はムーブ可能です)。
std::unique_ptr<int>
はムーブ可能ですが、
コピー可能でない型の例です。
ユーザ定義型に対しては、
ムーブの振る舞いはムーブコンストラクタとムーブ代入演算子で定義されます。
The copy/move constructors can be implicitly invoked by the compiler in some situations, e.g. when passing objects by value.
コピー/ムーブコンストラクタは、 ある状況ではコンパイラによって暗黙的に実行されます。 例えば、オブジェクトを値渡しするときです。
Objects of copyable and movable types can be passed and returned by value, which makes APIs simpler, safer, and more general. Unlike when passing pointers or references, there's no risk of confusion over ownership, lifetime, mutability, and similar issues, and no need to specify them in the contract. It also prevents non-local interactions between the client and the implementation, which makes them easier to understand and maintain. Such objects can be used with generic APIs that require pass-by-value, such as most containers.
コピー可能でムーブ可能な型のオブジェクトは、 値で渡したり戻すことができます。これによって、 APIは、より簡潔に、より安全に、より汎用的になります。 ポインタや参照で渡したときとは違って、 所有権、生存期間、可変性や類似する問題で混乱するリスクはなく、 それらを契約として記述する必要もありません。 さらに、クライアントと実装の間での非局所的な相互作用を防ぎ、 それらを理解し保守することを簡単にします。 そのようなオブジェクトは、多くのコンテナのように、 値渡しを要求する汎用的なAPIとして使われます。
Copy/move constructors and assignment operators are usually
easier to define correctly than alternatives
like Clone()
, CopyFrom()
or Swap()
,
because they can be generated by the compiler, either implicitly or
with = default
. They are concise, and ensure
that all data members are copied. Copy and move
constructors are also generally more efficient, because they don't
require heap allocation or separate initialization and assignment
steps, and they're eligible for optimizations such as
copy elision.
コピー/ムーブコンストラクタとコピー/ムーブ代入演算子は、一般に、
Clone()
、CopyFrom()
、Swap()
のような選択肢に比べて、正しく定義することが簡単です。
なぜなら、暗黙的に、もしくは、= default
をともなういずれかとき、コンパイラによって生成されるからです。
生成されたものは簡潔で、すべてのメンバ変数がコピーされることを保証します。
コピー/ムーブコンストラクタは、一般的に、効率的でもあります。
なぜなら、ヒープ割当を要求しない、もしくは、
初期化と代入のステップを分離しないため、
コピーの省略
のような最適化にとって望ましいからです。
Move operations allow the implicit and efficient transfer of resources out of rvalue objects. This allows a plainer coding style in some cases.
ムーブ操作は、 右辺値オブジェクトからのリソース移動を暗黙的に効率化できます。 これはいくつかのケースではわかりやすいコーディングスタイルになります。
Many types do not need to be copyable, and providing copy operations for them can be confusing, nonsensical, or outright incorrect. Copy/assigment operations for base class types are hazardous, because use of them can lead to object slicing. Defaulted or carelessly-implemented copy operations can be incorrect, and the resulting bugs can be confusing and difficult to diagnose.
多くの型はコピー可能である必要はなく、コピー操作を提供することは、 混乱しやすい、本質でない、あるいは、完全に間違っているかもしれません。 基底クラスに対するコピー/代入操作は危険です。なぜなら、それらを使うと オブジェクトのスライシング につながります。デフォルトで生成された、もしくは、 注意深く実装されたコピー操作が間違っていると、 結果として生じたバグは混乱しやすく原因究明が難しいかもしれません。
Copy constructors are invoked implicitly, which makes the invocation easy to miss. This may cause confusion, particularly for programmers used to languages where pass-by-reference is conventional or mandatory. It may also encourage excessive copying, which can cause performance problems.
コピーコンストラクタが暗黙的に呼び出されることは、 コピーコンストラクタの呼び出しを間違えやすくなります。これは、 特に参照渡しが規約か必須の言語をよく使っていたプログラマにとっては、 混乱をまねくかもしれません。また、それは余計なコピーを助長して、 性能問題を引き起こすかもしれません。
Make your type copyable/movable if it will be useful, and if it makes sense in the context of the rest of the API. As a rule of thumb, if the behavior (including computational complexity) of a copy isn't immediately obvious to users of your type, your type shouldn't be copyable. If you choose to make it copyable, define both copy operations (constructor and assignment). If your type is copyable and a move operation is more efficient than a copy, define both move operations (constructor and assignment). If your type is not copyable, but the correctness of a move is obvious to users of the type and its fields support it, you may make the type move-only by defining both of the move operations.
あなたの型にとって有益で、かつ、APIの残りの文脈で意味をなすのであれば、 コピー可能/ムーブ可能にしてください。 大雑把に言うと、計算量の複雑さを含めたコピーの振る舞いが、 ユーザにとって直ちに明らかでないのであれば、コピー可能にするべきではありません。 もし、コピー可能にすることを選ぶならば、 両方のコピー操作(コンストラクタと代入)を定義してください。 もし、ある型がコピー可能で、コピーよりムーブ操作が効率的ならば、 両方のムーブ操作(コンストラクタと代入)を定義してください。 もし、コピー可能ではないが、 ムーブの正しさがユーザとサポートする範囲が明らかであるならば、 両方のムーブ操作を定義することによってムーブだけ可能な型にしてもかまいません。
Prefer to define copy and move operations with = default
.
Defining non-default move operations currently requires a style
exception. Remember to review the correctness of any defaulted
operations as you would any other code.
= default
を使ってコピーとムーブ操作を定義することを優先してください。
デフォルトでないムーブ操作を定義することは、いまのところ、
スタイルの例外を要求します。
あなたがその他のコードでやりたいことと同様に、
デフォルト定義の操作の正しさを確認するべきであることを覚えておいてください。
Due to the risk of slicing, avoid providing an assignment
operator or public copy/move constructor for a class that's
intended to be derived from (and avoid deriving from a class
with such members). If your base class needs to be
copyable, provide a public virtual Clone()
method, and a protected copy constructor that derived classes
can use to implement it.
スライシングのリスクのため、派生されることを意図したクラスに対して、
代入演算子やパブリックなコピー/ムーブコンストラクタを提供することは避けてください。
(また、そのようなメンバを持つクラスから派生することは避けてください。)
もし親クラスをコピー可能にする必要があるのであれば、
パブリックな仮想メソッドClone()
と、
派生クラスがそれを実装するために使えるように
プロテクテッドなコピーコンストラクタを提供してください。
If you do not want to support copy/move operations on
your type, explicitly disable them using = delete
or
whatever
other mechanism your project uses.
もしコピー/ムーブ操作をサポートしたくないのであれば、
= delete
を使うか、
あなたのプロジェクトで使っている機構でも何でも使って、
明示的に無効化してください。
コンストラクタの委譲と継承
Use delegating and inheriting constructors when they reduce code duplication.
コンストラクタのコードの重複を減らすときには委譲と継承を使ってください。
Delegating and inheriting constructors are two different features, both introduced in C++11, for reducing code duplication in constructors. Delegating constructors allow one of a class's constructors to forward work to one of the class's other constructors, using a special variant of the initialization list syntax. For example:
コンストラクタの委譲と継承は2つの異なる機能で、 コンストラクタでのコード重複を減らすために、 どちらもC++11で導入されました。 コンストラクタの委譲は、初期化子リスト構文の特殊な変形を使って、 あるクラスのコンストラクタはそのクラスの他のコンストラクタに 仕事を転送することができます。例えば、
X::X(const string& name) : name_(name) { ... } X::X() : X("") { }
Inheriting constructors allow a derived class to have its base class's constructors available directly, just as with any of the base class's other member functions, instead of having to redeclare them. This is especially useful if the base has multiple constructors. For example:
コンストラクタを継承することは、 ちょうど基底クラスの他のメンバ関数で行うのと同じように、 再宣言しなければいけないことに代わって、 派生クラスが基底クラスのコンストラクタを直接利用できるようにします。 これは基底クラスが複数のコンストラクタをもつ場合に特に役立ちます。 例えば、
class Base { public: Base(); Base(int n); Base(const string& s); ... }; class Derived : public Base { public: using Base::Base; // Base's constructors are redeclared here. };
class Base { public: Base(); Base(int n); Base(const string& s); ... }; class Derived : public Base { public: using Base::Base; // 基底クラスのコンストラクタはここで再宣言します。 };
This is especially useful when Derived
's
constructors don't have to do anything more than calling
Base
's constructors.
Derived
のコンストラクタがBase
のコンストラクタを呼び出す以上の何かをする必要がない場合に特に役立ちます。
Delegating and inheriting constructors reduce verbosity and boilerplate, which can improve readability.
コンストラクタの委譲と継承は冗長性と決まり文句を減らし、可読性を改善できます。
Delegating constructors are familiar to Java programmers.
コンストラクタの委譲はJavaプログラマにとっては親しみがあります。
It's possible to approximate the behavior of delegating constructors by using a helper function.
ヘルパ関数を使ってコンストラクタの委譲の振る舞いに近いことはできます。
Inheriting constructors may be confusing if a derived class introduces new member variables, since the base class constructor doesn't know about them.
もし派生クラスの新しいメンバ変数を追加した場合、 基底クラスのコンストラクタはそれらについて知らないため、 コンストラクタを継承することは混乱しやすいかもしれません。
Use delegating and inheriting constructors when they reduce boilerplate and improve readability. Be cautious about inheriting constructors when your derived class has new member variables. Inheriting constructors may still be appropriate in that case if you can use in-class member initialization for the derived class's member variables.
決まり文句を減らして可読性が改善されるのであれば、 コンストラクタの委譲と継承を使いましょう。 派生クラスに新しいメンバ変数があるときにはコンストラクタの継承に気をつけてください。 派生クラスのメンバ変数のためにクラス内メンバ初期化を使えるようなケースでは、 コンストラクタの継承もまた適切かもしれません。
構造体とクラス
Use a struct
only for passive objects that
carry data; everything else is a class
.
データを運ぶ受け身のオブジェクのためだけにstruct
を使い、
それ以外の場合にはclass
を使いましょう。
The struct
and class
keywords behave almost identically in C++. We add our own
semantic meanings to each keyword, so you should use the
appropriate keyword for the data-type you're
defining.
C++ではstruct
とclass
キーワードはほとんど同じように振る舞います。
わたしたちはそれぞれのキーワードにわたしたちの意味論の意味を追加するので、
あなたが定義するデータ型のために適切なキーワードを使ってください。
structs
should be used for passive
objects that carry data, and may have associated
constants, but lack any functionality other than
access/setting the data members. The accessing/setting of
fields is done by directly accessing the fields rather
than through method invocations. Methods should not
provide behavior but should only be used to set up the
data members, e.g., constructor, destructor,
Initialize()
, Reset()
,
Validate()
.
struct
はデータを運ぶ受け身オブジェクトのために使うべきです。
それは定数に関連付けられているかもしれませんが、
データメンバに読み書きする以外の機能はありません。
フィールドの読み書きはメソッド呼び出しを通じてではなく、
直接フィールドにアクセスすることで行われます。
メソッドは振る舞いを提供するべきではありませんが、
例えばコンストラクタやデストラクタ、Initialize()
、
Reset()
、Validate()
のように、
データメンバのセットアップにだけ使われるべきです。
If more functionality is required, a
class
is more appropriate. If in doubt, make
it a class
.
もしより多くの機能性が要求されるのであれば、
class
がより適切です。疑わしい場合も、
class
にしましょう。
For consistency with STL, you can use
struct
instead of class
for
functors and traits.
STLとの一貫性のために、ファンクタや型特性(traits)には
class
の代わりにstruct
を使いましょう。
Note that member variables in structs and classes have different naming rules.
構造体とクラスのメンバ変数は 異なる命名規則 を持つことに注意してください。
継承
Composition is often more appropriate than inheritance.
When using inheritance, make it public
.
継承より合成の方がより適切なことがしばしばあります。
継承を使うときは、public
継承にしましょう。
When a sub-class inherits from a base class, it includes the definitions of all the data and operations that the parent base class defines. In practice, inheritance is used in two major ways in C++: implementation inheritance, in which actual code is inherited by the child, and interface inheritance, in which only method names are inherited.
基本クラスからサブクラスに継承するときは、 親の基本クラスが定義するデータと操作の定義すべてを含みます。 実用的には、継承はC++では二つの目立った方法で使われます。 実際のコードが子供に継承される実装の継承と、 メソッドの名前だけが継承される インタフェースの継承です。
Implementation inheritance reduces code size by re-using the base class code as it specializes an existing type. Because inheritance is a compile-time declaration, you and the compiler can understand the operation and detect errors. Interface inheritance can be used to programmatically enforce that a class expose a particular API. Again, the compiler can detect errors, in this case, when a class does not define a necessary method of the API.
実装の継承は、 基本クラスのコードを再利用することによって、 既存の型に特殊化するのと同じようにコードサイズを減らします。 継承はコンパイル時の宣言なので、 あなたとコンパイラはその操作を理解してエラーを検出できます。 インタフェースの継承はあるクラスが特定のAPIを提供することを プログラムにしたがって強制するのに使われます。また、このケースでは、 APIの必要なメソッドを定義していないときにコンパイラはエラーを検出できます。
For implementation inheritance, because the code implementing a sub-class is spread between the base and the sub-class, it can be more difficult to understand an implementation. The sub-class cannot override functions that are not virtual, so the sub-class cannot change implementation. The base class may also define some data members, so that specifies physical layout of the base class.
実装の継承の場合、 サブクラスを実装するコードは基本クラスとサブクラスに広がっているので、 実装を理解することはより難しくなるかもしれません。 サブクラスは仮想でない関数をオーバーライドできないので、 サブクラスは実装を変更できません。 基本クラスは、いくつかのデータメンバを定義できるので、 そのため基本クラスの物理的なレイアウトを指定できます。
All inheritance should be public
. If you
want to do private inheritance, you should be including
an instance of the base class as a member instead.
すべての継承はpublic
であるべきです。
もしあなたがprivate継承をしたいのであれば、
代わりに基本クラスのインスタンスをメンバとして含めるべきです。
Do not overuse implementation inheritance. Composition
is often more appropriate. Try to restrict use of
inheritance to the "is-a" case: Bar
subclasses Foo
if it can reasonably be said
that Bar
"is a kind of"
Foo
.
実装の継承を使いすぎてはいけません。
しばしば合成の方がより適切です。
継承を"is-a"関係への使用に制限しようとしてみてください。
もしBar
がFoo
の一種であると合理的に言えるのであれば、
Bar
をFoo
のサブクラスにしましょう。
Make your destructor virtual
if
necessary. If your class has virtual methods, its
destructor should be virtual.
必要であればデストラクタをvirtual
にしてください。
もしあなたのクラスが仮想メソッドをもつのであれば、
そのデストラクタはvirtualであるべきです。
Limit the use of protected
to those
member functions that might need to be accessed from
subclasses. Note that data
members should be private.
protected
の使用を
サブクラスからアクセスされる必要があるかもしれないメンバ関数に制限してください。
データメンバはprivateであるべきに注意してください。
Explicitly annotate overrides of virtual functions
or virtual destructors with an override
or (less frequently) final
specifier.
Older (pre-C++11) code will use the
virtual
keyword as an inferior
alternative annotation. For clarity, use exactly one of
override
, final
, or
virtual
when declaring an override.
Rationale: A function or destructor marked
override
or final
that is
not an override of a base class virtual function will
not compile, and this helps catch common errors. The
specifiers serve as documentation; if no specifier is
present, the reader has to check all ancestors of the
class in question to determine if the function or
destructor is virtual or not.
仮想関数のオーバーライドや仮想デストラクタを
override
か(それほど多くはない)final
修飾子で明示的に注釈をつけてください。
古い(C++11以前の)コードはvirtual
キーワードを
劣っている代わりの注釈として使うかもしれません。
明快さのために、オーバーライドを宣言するときは、
override
かfinal
、
virtual
のどれか一つを使ってください。
理論的根拠は次の通りです。
基本クラスの仮想関数のオーバーライドをしない
override
かfinal
で印がつけられた関数やデストラクタは
コンパイルされないので、これは共通のエラーを得る助けとなります。
修飾子はドキュメントとして提供されます。
もし修飾子がないと、その関数やデストラクタが仮想かどうかに答えるために、
読み手はそのクラスのすべての祖先をチェックしなければいけません。
多重継承
Only very rarely is multiple implementation inheritance
actually useful. We allow multiple inheritance only when at
most one of the base classes has an implementation; all
other base classes must be pure
interface classes tagged with the
Interface
suffix.
実装の多重継承が実際に役立つことは非常にまれです。
わたしたちは基本クラスの高々一つが実装をもつときだけ多重継承を認めます。
他のすべての基本クラスは接尾辞Interface
でタグ付けされた
純粋なインタフェースであるクラスでなければいけません。
Multiple inheritance allows a sub-class to have more than one base class. We distinguish between base classes that are pure interfaces and those that have an implementation.
多重継承はサブクラスが一つより多い基本クラスをもつことを許します。 わたしたちは基本クラスの純粋なインタフェースであるクラスと 実装をもつクラスで区別します。
Multiple implementation inheritance may let you re-use even more code than single inheritance (see Inheritance).
実装の多重継承は単一の継承よりたくさんのコードを再利用できるようにするかもしれません (継承を見てください)。
Only very rarely is multiple implementation inheritance actually useful. When multiple implementation inheritance seems like the solution, you can usually find a different, more explicit, and cleaner solution.
実装の多重継承が実際に役立つことは非常にまれです。 実装の多重継承が解決策のようにみえるとき、 あなたは通常、より明示的でよりきれいな違う解決策を見つけることができるでしょう。
Multiple inheritance is allowed only when all
superclasses, with the possible exception of the first one,
are pure interfaces. In order to
ensure that they remain pure interfaces, they must end with
the Interface
suffix.
多重継承は、すべてのスーパークラスが最初の一つを除いて
純粋なインタフェースであるときだけ認められます。
純粋なインタフェースであり続けることを保証するために、
それらのクラスは接尾辞Interface
で終わるべきです。
インタフェース
Classes that satisfy certain conditions are allowed, but
not required, to end with an Interface
suffix.
一定の条件を満たすクラスは接尾辞Interface
で終わることを認めますが、必須ではありません。
A class is a pure interface if it meets the following requirements:
次の条件を満たすとき、クラスは純粋なインタフェースです。
- It has only public pure virtual ("
= 0
") methods and static methods (but see below for destructor). - It may not have non-static data members.
- It need not have any constructors defined. If a constructor is provided, it must take no arguments and it must be protected.
- If it is a subclass, it may only be derived from
classes that satisfy these conditions and are tagged
with the
Interface
suffix.
- パブリックな仮想メソッド("
=0
")と静的メソッドのみをもっている。 - 静的でないデータメンバをもっていない。
- コンストラクタが定義されている必要はない。 もしあるコンストラクタが提供されている場合、 それは引数を持たずプロテクテッドでなければならない。
- もしそれがサブクラスなら、それらの条件を満たす接尾辞
Interface
でタグ付けされてるクラスからのみ派生していなければいけない。
An interface class can never be directly instantiated because of the pure virtual method(s) it declares. To make sure all implementations of the interface can be destroyed correctly, the interface must also declare a virtual destructor (in an exception to the first rule, this should not be pure). See Stroustrup, The C++ Programming Language, 3rd edition, section 12.4 for details.
純粋仮想メソッドを宣言しているので、 インタフェースクラスは直接インスタンス化されることはありません。 そのインタフェースのすべての実装が必ず正しく破棄されるように、 そのインタフェースは仮想デストラクタも宣言しなければいけません (最初のルールに対する例外があり、これは純粋にしてはいけません)。 詳しくは、プログラミング言語C++第3版の12.4節を見てください。
Tagging a class with the Interface
suffix
lets others know that they must not add implemented
methods or non static data members. This is particularly
important in the case of multiple inheritance.
Additionally, the interface concept is already
well-understood by Java programmers.
接尾辞Interface
でタグ付けされたクラスは、
実装されたメソッドや非静的データメンバを追加してはいけないことを
他の人に知らせます。
これは特に多重継承の場合に重要です。
加えて、インタフェースの概念はすでにJavaプログラマによってよく理解されています。
The Interface
suffix lengthens the class
name, which can make it harder to read and understand.
Also, the interface property may be considered an
implementation detail that shouldn't be exposed to
clients.
接尾辞Interface
はクラスの名前を長くし、
読んで理解することを難しくするかもしれません。
また、インタフェースの性質は、
クライアントに公開されるべきでない実装の詳細と考えられるかもしれません。
A class may end
with Interface
only if it meets the above
requirements. We do not require the converse, however:
classes that meet the above requirements are not required
to end with Interface
.
上記の条件を満たすときだけ、
クラスは接尾辞Interface
で終わるかもしれません。
しかしながら、逆は必要ありません。すなわち、
上記の条件を満たすクラスはInterface
で終わる必要はありません。
演算子のオーバーロード
Do not overload operators except in rare, special circumstances. Do not create user-defined literals.
まれで特別な状況を除いて、 演算子をオーバーロードしてはいけません。 ユーザ定義のリテラルを作ってはいけません。
A class can
define that operators such as +
and
/
operate on the class as if it were a
built-in type. An overload of operator""
allows the built-in literal syntax to be used to create
objects of class types.
クラスは、
組み込み型と同じようにクラスに作用する+
と/
のような演算子を定義できます。
operator""
のオーバーロードは、
組み込みのリテラル構文をクラス型のオブジェクトを作るために使うことができます。
Operator overloading can make code appear more
intuitive because a class will behave in the same way as
built-in types (such as int
). Overloaded
operators are more playful names for functions that are
less-colorfully named, such as Equals()
or
Add()
.
int
のような組み込み型と同じようにクラスが振舞うので、
演算子のオーバーロードは見えるコードをより直感的にできます。
オーバーロードされた演算子はEquals()
やAdd()
のような
色あせた関数名に比べてよりお茶目です。
For some template functions to work correctly, you may need to define operators.
いくつかのテンプレート関数に対しては正しく動作しますが、 複数の演算子を定義する必要があるかもしれません。
User-defined literals are a very concise notation for creating objects of user-defined types.
ユーザ定義リテラルは、 ユーザ定義型のオブジェクト作成のための非常に簡潔な記法です。
While operator overloading can make code more intuitive, it has several drawbacks:
演算子のオーバーロードはコードをより直感的にできる一方で、 いくつかの欠点があります。
- It can fool our intuition into thinking that expensive operations are cheap, built-in operations.
- It is much harder to find the call sites for
overloaded operators. Searching for
Equals()
is much easier than searching for relevant invocations of==
. - Some operators work on pointers too, making it easy
to introduce bugs.
Foo + 4
may do one thing, while&Foo + 4
does something totally different. The compiler does not complain for either of these, making this very hard to debug. - User-defined literals allow creating new syntactic forms that are unfamiliar even to experienced C++ programmers.
- 高価な操作が安価な組み込み操作であるとわたしたちの直感をだますことができます。
- オーバーロードされた演算子の呼び出し場所を見つけることがより難しくなります。
Equals()
を探すことは、==
に関連する呼び出しを見つけることよりもより簡単です。 - ポインタに作用するいくつかの演算子もバグを導入しやすくします。
Foo + 4
は一つのことをしますが、&Foo + 4
は全く違うことをいくつか行います。 コンパイラはこれらのどちらであるかを説明しないので、 デバッグすることがとても難しくなります。 - ユーザ定義リテラルは、 経験を積んだC++プログラマでさえ親しみにくい新しい構文を作ることができます。
Overloading also has surprising ramifications. For
instance, if a class overloads unary
operator&
, it cannot safely be
forward-declared.
オーバーロードは驚くべき副作用ももっています。
例えば、あるクラスが単項のoperator&
をオーバーロードした場合、
それを安全に前方宣言することができません。
In general, do not overload operators. You can define
ordinary functions like Equals()
if
you need them. Likewise, avoid the dangerous unary
operator&
at all costs, if there's any
possibility the class might be forward-declared.
一般的には、演算子をオーバーロードしてはいけません。
もし必要なら、Equals()
のような普通の関数を定義できます。
同様に、もしそのクラスが前方宣言される可能性があるのであれば、
危険な単項のoperator&
を何としても避けてください。
Do not overload operator""
, i.e. do not
introduce user-defined literals.
operator""
はオーバーロードしてはいけません。
すなわち、ユーザ定義リテラルを導入してはいけません。
However, there may be rare cases where you need to
overload an operator to interoperate with templates or
"standard" C++ classes (such as
operator<<(ostream&, const T&)
for logging). These are acceptable if fully justified, but you should try to avoid these
whenever possible. In particular, do not overload
operator==
or operator<
just
so that your class can be used as a key in an STL
container; instead, you should create equality and
comparison functor types when declaring the
container.
しかしながら、
(ロギングのためのoperator<<(ostream&, const T&)
のような、)
テンプレートや標準のC++クラスに相互作用するための演算子をオーバーロードする必要がある稀なケースがあるかもしれません。
もし完全に正当化されるのであれば、それらは認められますが、
可能なときはいつでもそれらを避けようとするべきです。
特に、単にあなたのクラスをSTLのコンテナのキーとして使いたいだけで
operator==
やoperator<
をオーバーロードしてはいけません。
代わりに、コンテナを宣言するときに等値と比較ファンクタの型を作りましょう。
Some of the STL algorithms do require you to overload
operator==
, and you may do so in these
cases, provided you document why.
STLアルゴリズムのいくつかは
operator==
をオーバーロードすることをあなたに要求するので、
あなたがその場合にそうしたら、理由をドキュメントにして提供してください。
See also Copyable and Movable Types and Function Overloading.
コピー可能とムーブ可能な型と 関数のオーバーロードも見てください。
アクセス制御
Make data members private
, and provide access
to them through accessor functions as needed (for technical
reasons, we allow data members of a test fixture class to
be protected
when using
Google
Test). Typically a variable would be called
foo_
and the accessor function
foo()
. You may also want a mutator function
set_foo()
. Exception: static
const
data members (typically called
kFoo
) need not be private
.
データメンバをprivate
にして、
必要に応じてアクセッサ関数を通じたアクセス方法を提供してください。
技術的な理由のため、
Google Testを使うときに、
テストのフィクスチャクラスのデータメンバをprotected
にしても構いません。
典型的に、変数はfoo_
、そのアクセッサ関数はfoo()
と呼ばれます。
ミューテータ関数set_foo()
も欲しいかもしれません。
例外である(典型的にkFoo
と呼ばれる)static const
データメンバは
private
である必要はありません。
The definitions of accessors are usually inlined in the header file.
アクセッサの定義は通常ヘッダファイルにインラインとして置かれます。
See also Inheritance and Function Names.
宣言の順序
Use the specified order of declarations within a class:
public:
before private:
, methods
before data members (variables), etc.
クラスの中では指定された宣言の順序を使ってください。
例えば、private:
の前にpublic:
、
データメンバ(変数)の前にメソッド、などです。
Your class definition should start with its
public:
section, followed by its
protected:
section and then its
private:
section. If any of these sections
are empty, omit them.
クラスの定義は、
public:
セクションで始まり、
protected:
セクションが続いて、
それからprivate:
セクションです。
もしそれらのセクションが空である場合には、省略してください。
Within each section, the declarations generally should be in the following order:
各セクションの中では、宣言は一般的に次の順序であるべきです。
- Typedefs and Enums
- Constants (
static const
data members) - Constructors
- Destructor
- Methods, including static methods
- Data Members (except
static const
data members)
- typedefとenum
- 定数(
static const
データメンバ) - コンストラクタ
- デストラクタ
- メソッド(静的メソッドを含む)
- データメンバ(
static const
データメンバを除く)
Friend declarations should always be in the private
section. If copying and assignment are disabled with a macro
such as DISALLOW_COPY_AND_ASSIGN
, it should be
at the end of the private:
section, and should be
the last thing in the class. See
Copyable and Movable Types.
フレンド宣言は常にprivateセクションの中に置かれるべきです。
もし、DISALLOW_COPY_AND_ASSIGN
のようなマクロを使ってコピーと代入を無効にするのであれば、
private:
セクションの終わりに置いて、
クラスの中で最後のものにするべきです。
Method definitions in the corresponding
.cc
file should be the same as the
declaration order, as much as possible.
対応する.cc
ファイルの中にメソッドの定義は、
可能な限り宣言の順序と同じであるべきです。
Do not put large method definitions inline in the class definition. Usually, only trivial or performance-critical, and very short, methods may be defined inline. See Inline Functions for more details.
大きなメソッド定義をクラス定義の中にインラインで置いてはいけません。 通常、自明であるか性能が重要であり、かつ、とても短いメソッドはインラインで定義されるかもしれません。 詳しくはインライン関数を見てください。
短い関数を書こう
Prefer small and focused functions.
小さくて集中した関数を好んでください。
We recognize that long functions are sometimes appropriate, so no hard limit is placed on functions length. If a function exceeds about 40 lines, think about whether it can be broken up without harming the structure of the program.
長い関数はときどき適切なので、関数の長さに厳しい制約は設けていません。 もしある関数がおよそ40行を超える場合、 プログラムの構造を悪くすることなく分割できるかどうか考えみてください。
Even if your long function works perfectly now, someone modifying it in a few months may add new behavior. This could result in bugs that are hard to find. Keeping your functions short and simple makes it easier for other people to read and modify your code.
たとえもし長い関数がいま完璧に動作しているとしても、 数ヶ月のうちにだれかが変更することで新しい振る舞いが追加されるかもしれません。 これは見つけることが難しいバグという結果になるでしょう。 関数を短く簡素に保つことで他の人々がコードを読んだり変更しやすくなります。
You could find long and complicated functions when working with some code. Do not be intimidated by modifying existing code: if working with such a function proves to be difficult, you find that errors are hard to debug, or you want to use a piece of it in several different contexts, consider breaking up the function into smaller and more manageable pieces.
何らかのコードと作業するときに長くて複雑な関数を見つけるかもしれません。 既存のコードを変更すること恐れないでください。 もしそのような検証することが難しい関数と作業するのであれば、 デバッグしにくいエラーを見つけるでしょうし、 あるいはいくつかの文脈でその一部分を使いたくなるでしょう。 その関数をより小さくて管理しやすい部品に分解することを検討してください。
Google特有の魔法
There are various tricks and utilities that we use to make C++ code more robust, and various ways we use C++ that may differ from what you see elsewhere.
わたしたちがC++のコードをより強固にするために使う様々なトリックとユーティリティがあり、 わたしたちがC++を使う様々な方法はあなたがどこかで見たことがあるものと違うかもしれません。
所有権とスマートポインタ
Prefer to have single, fixed owners for dynamically allocated objects. Prefer to transfer ownership with smart pointers.
動的に割り当てられたオブジェクトは一つの決まった所有者が持つようにしてください。 スマートポインタと共に所有権を委譲してください。
"Ownership" is a bookkeeping technique for managing dynamically allocated memory (and other resources). The owner of a dynamically allocated object is an object or function that is responsible for ensuring that it is deleted when no longer needed. Ownership can sometimes be shared, in which case the last owner is typically responsible for deleting it. Even when ownership is not shared, it can be transferred from one piece of code to another.
「所有権」は動的に割り当てたれたメモリ(と他のリソース)を管理するための保守技術です。 動的に割り当てられたオブジェクトの所有者は、 必要のなくなったときにそれが削除されることを保証する責任を持っているオブジェクトか関数です。 所有権はときどき共有され、そのようなケースでは一般的に最後の所有者がそれを削除する責任を持ちます。 所有権が共有されないときであっても、コードの一部分からその他へ委譲されるかもしれません。
"Smart" pointers are classes that act like pointers,
e.g. by overloading the *
and
->
operators. Some smart pointer types
can be used to automate ownership bookkeeping, to ensure
these responsibilities are met.
std::unique_ptr
is a smart pointer type
introduced in C++11, which expresses exclusive ownership
of a dynamically allocated object; the object is deleted
when the std::unique_ptr
goes out of scope.
It cannot be copied, but can be moved to
represent ownership transfer.
std::shared_ptr
is a smart pointer type
that expresses shared ownership of
a dynamically allocated object. std::shared_ptr
s
can be copied; ownership of the object is shared among
all copies, and the object is deleted when the last
std::shared_ptr
is destroyed.
「スマート」ポインタは、たとえば、
*
と->
演算子をオーバーロードすることによって、
ポインタのように振る舞うクラスです。
いくつかのスマートポインタ型は、それらの責任が満たされるように保証するため、
所有権の保守を自動化することに使われます。
std::unique_ptr
はC++11で導入されたスマートポインタ型で、
動的に割り当てられたオブジェクトの排他的な所有権を表現します。
std::unique_ptr
がスコープの外に出るときに、そのオブジェクトは削除されます。
std::unique_ptr
はコピーできませんが、所有権の委譲を表すムーブはできます。
std::shared_ptr
は、動的に割り当てられてオブジェクトの共有された所有権を表現します。
std::shared_ptr
はコピーできます。
オブジェクトの所有権はすべてのコピーの間で共有され、
最後のstd::shared_ptr
が破棄されたときにそのオブジェクトを削除します。
- It's virtually impossible to manage dynamically allocated memory without some sort of ownership logic.
- Transferring ownership of an object can be cheaper than copying it (if copying it is even possible).
- Transferring ownership can be simpler than 'borrowing' a pointer or reference, because it reduces the need to coordinate the lifetime of the object between the two users.
- Smart pointers can improve readability by making ownership logic explicit, self-documenting, and unambiguous.
- Smart pointers can eliminate manual ownership bookkeeping, simplifying the code and ruling out large classes of errors.
- For const objects, shared ownership can be a simple and efficient alternative to deep copying.
- なんらかの所有権のロジックの類なしに、 動的に割り当てられたオブジェクトを管理することはほとんど不可能です。
- あるオブジェクトの所有権を委譲することは、 (もしコピーすることができたとしても)それをコピーするより安いです。
- 所有権を委譲することはポインタか参照を「借りる」より簡単です。 なぜなら、二つのユーザの間でそのオブジェクトの生存期間を調整する必要を減らすからです。
- スマートポインタは、 所有権のロジックを明示的に自身を文書化して明確にすることによって、 可読性を改善するかもしれません。
- スマートポインタは手動の所有権の保守を排除でき、 コードを単純化してエラーの巨大なクラスを排除します。
- constオブジェクトに対して、 共有された所有権は単純で深いコピーの効率的な代案になるかもしれません。
- Ownership must be represented and transferred via pointers (whether smart or plain). Pointer semantics are more complicated than value semantics, especially in APIs: you have to worry not just about ownership, but also aliasing, lifetime, and mutability, among other issues.
- The performance costs of value semantics are often overestimated, so the performance benefits of ownership transfer might not justify the readability and complexity costs.
- APIs that transfer ownership force their clients into a single memory management model.
- Code using smart pointers is less explicit about where the resource releases take place.
std::unique_ptr
expresses ownership transfer using C++11's move semantics, which are relatively new and may confuse some programmers.- Shared ownership can be a tempting alternative to careful ownership design, obfuscating the design of a system.
- Shared ownership requires explicit bookkeeping at run-time, which can be costly.
- In some cases (e.g. cyclic references), objects with shared ownership may never be deleted.
- Smart pointers are not perfect substitutes for plain pointers.
- 所有権は、(スマートか生の)ポインタを介して表現され、 委譲されなければいけません。 特にAPIでは、ポインタの意味論は値の意味論より複雑です。 所有権についてだけでなく、別名や生存期間、 ミュータビリティやその他の問題に囲まれて、 あなたは心配しなければいけません。
- 値の意味論の性能コストはしばしば過大評価されるので、 所有権の委譲による性能の恩恵は、 可読性と複雑さのコストを正当化しないかもしれません。
- 所有権を委譲するAPIはクライアントに単一メモリ管理モデルを強制します。
- スマートポインタを使ったコードは、 リソース解放が行われる場所がより明白でなくなります。
- C++11のムーブセマンティクスを使って所有権の委譲を表現する
std::unique_ptr
は、比較的新しく、 何人かのプログラマを混乱させるかもしれません。 - 共有された所有権は、 注意深い所有権の設計に対して心をそそる第二の選択肢かもしれませんが、 システムの設計をわかりにくくします。
- 共有された所有権は実行時に明示的な保守を要求し、高価かもしれません。
- (たとえば、循環参照のような、)いくつかのケースでは、 共有された所有権を伴うオブジェクトは削除されないかもしれません。
- スマートポインタは生ポインタの完全な代用品ではありません。
If dynamic allocation is necessary, prefer to keep
ownership with the code that allocated it. If other code
needs access to the object, consider passing it a copy,
or passing a pointer or reference without transferring
ownership. Prefer to use std::unique_ptr
to
make ownership transfer explicit. For example:
もし動的な割り当てが必要であれば、
それを割り当てたコードが所有権を持つようにしてください。
もしその他のコードがそのオブジェクトへのアクセスが必要な場合、
コピーを渡すか、所有権を委譲せずにポインタか参照を渡すことを検討してください。
所有権を明示的に委譲するためには、std::unique_ptr
を使ってください。
例えば、
std::unique_ptr<Foo> FooFactory(); void FooConsumer(std::unique_ptr<Foo> ptr);
Do not design your code to use shared ownership
without a very good reason. One such reason is to avoid
expensive copy operations, but you should only do this if
the performance benefits are significant, and the
underlying object is immutable (i.e.
std::shared_ptr<const Foo>
). If you
do use shared ownership, prefer to use
std::shared_ptr
.
とても良い理由がなく共有された所有権を使うようにあなたのコードを設計してはいけません。
そのような理由の一つは、高価なコピー操作を回避することですが、
性能の恩恵が重要で、かつ、後ろのオブジェクトが不変であるときだけ、そうするべきです。
(たとえば、、std::shared_ptr<const Foo>
です。)
もし共有された所有権を使うのであれば、
std::shared_ptr
を使ってください。
Do not use scoped_ptr
in new code unless
you need to be compatible with older versions of C++.
Never use std::auto_ptr
. Instead, use
std::unique_ptr
.
C++の古いバージョンと互換性がある必要がない限り、
新しいコードの中でscoped_ptr
を使ってはいけません。
std::auto_ptr
は決して使ってはいけません。
代わりに、std::unique_ptr
を使ってください。
cpplint
Use cpplint.py
to detect style errors.
スタイルエラーを検出するためにcpplint.py
を使ってください。
cpplint.py
is a tool that reads a source file and identifies many
style errors. It is not perfect, and has both false
positives and false negatives, but it is still a valuable
tool. False positives can be ignored by putting //
NOLINT
at the end of the line or
// NOLINTNEXTLINE
in the previous line.
cpplint.py
はソースファイルを読み込んで多くのスタイルエラーを同定するツールです。
完全ではなく、偽陽性と偽陰性の両方がありますが、それでも価値のあるツールです。
偽陽性は、行の終わりに// NOLINT
を置くか、
前の行に// NOLINTNEXTLINE
を置くことで、無視されます。
Some projects have instructions on
how to run cpplint.py
from their project
tools. If the project you are contributing to does not,
you can download
cpplint.py
separately.
いくつかのプロジェクトでは、
プロジェクトのツールからcpplint.py
を実行する方法の説明があります。
もしあなたが貢献しているプロジェクトがやっていないのであれば、別に
cpplint.py
をダウンロードできます。
Other C++ Features
Reference Arguments
All parameters passed by reference must be labeled
const
.
In C, if a
function needs to modify a variable, the parameter must
use a pointer, eg int foo(int *pval)
. In
C++, the function can alternatively declare a reference
parameter: int foo(int &val)
.
Defining a parameter as reference avoids ugly code like
(*pval)++
. Necessary for some applications
like copy constructors. Makes it clear, unlike with
pointers, that a null pointer is not a possible
value.
References can be confusing, as they have value syntax but pointer semantics.
Within function parameter lists all references must be
const
:
void Foo(const string &in, string *out);
In fact it is a very strong convention in Google code
that input arguments are values or const
references while output arguments are pointers. Input
parameters may be const
pointers, but we
never allow non-const
reference parameters
except when required by convention, e.g.,
swap()
.
However, there are some instances where using
const T*
is preferable to const
T&
for input parameters. For example:
- You want to pass in a null pointer.
- The function saves a pointer or reference to the input.
Remember that most of the time input
parameters are going to be specified as const
T&
. Using const T*
instead
communicates to the reader that the input is somehow
treated differently. So if you choose const
T*
rather than const T&
, do so
for a concrete reason; otherwise it will likely confuse
readers by making them look for an explanation that
doesn't exist.
Rvalue References
Use rvalue references only to define move constructors and move
assignment operators. Do not
use std::forward
.
Rvalue references
are a type of reference that can only bind to temporary
objects. The syntax is similar to traditional reference
syntax. For example, void f(string&&
s);
declares a function whose argument is an
rvalue reference to a string.
- Defining a move constructor (a constructor taking
an rvalue reference to the class type) makes it
possible to move a value instead of copying it. If
v1
is avector<string>
, for example, thenauto v2(std::move(v1))
will probably just result in some simple pointer manipulation instead of copying a large amount of data. In some cases this can result in a major performance improvement. - Rvalue references make it possible to write a generic function wrapper that forwards its arguments to another function, and works whether or not its arguments are temporary objects.
- Rvalue references make it possible to implement types that are movable but not copyable, which can be useful for types that have no sensible definition of copying but where you might still want to pass them as function arguments, put them in containers, etc.
std::move
is necessary to make effective use of some standard-library types, such asstd::unique_ptr
.
- Rvalue references are a relatively new feature (introduced as part of C++11), and not yet widely understood. Rules like reference collapsing, and automatic synthesis of move constructors, are complicated.
Use rvalue references only to define move constructors and move
assignment operators, as described in
Copyable and Movable Types.
Do not use std::forward
utility function. You may
use std::move
to express moving a value from one object
to another rather than copying it.
Function Overloading
Use overloaded functions (including constructors) only if a reader looking at a call site can get a good idea of what is happening without having to first figure out exactly which overload is being called.
You may write a function that takes a const
string&
and overload it with another that
takes const char*
.
class MyClass { public: void Analyze(const string &text); void Analyze(const char *text, size_t textlen); };
Overloading can make code more intuitive by allowing an identically-named function to take different arguments. It may be necessary for templatized code, and it can be convenient for Visitors.
If a function is overloaded by the argument types alone, a reader may have to understand C++'s complex matching rules in order to tell what's going on. Also many people are confused by the semantics of inheritance if a derived class overrides only some of the variants of a function.
If you want to overload a function, consider qualifying
the name with some information about the arguments, e.g.,
AppendString()
, AppendInt()
rather than just Append()
.
Default Arguments
We do not allow default function parameters, except in limited situations as explained below. Simulate them with function overloading instead, if appropriate.
Often you have a function that uses default values, but occasionally you want to override the defaults. Default parameters allow an easy way to do this without having to define many functions for the rare exceptions. Compared to overloading the function, default arguments have a cleaner syntax, with less boilerplate and a clearer distinction between 'required' and 'optional' arguments.
Function pointers are confusing in the presence of default arguments, since the function signature often doesn't match the call signature. Adding a default argument to an existing function changes its type, which can cause problems with code taking its address. Adding function overloads avoids these problems. In addition, default parameters may result in bulkier code since they are replicated at every call-site -- as opposed to overloaded functions, where "the default" appears only in the function definition.
While the cons above are not that onerous, they still outweigh the (small) benefits of default arguments over function overloading. So except as described below, we require all arguments to be explicitly specified.
One specific exception is when the function is a static function (or in an unnamed namespace) in a .cc file. In this case, the cons don't apply since the function's use is so localized.
In addition, default function parameters are allowed in constructors. Most of the cons listed above don't apply to constructors because it's impossible to take their address.
Another specific exception is when default arguments are used to simulate variable-length argument lists.
// Support up to 4 params by using a default empty AlphaNum. string StrCat(const AlphaNum &a, const AlphaNum &b = gEmptyAlphaNum, const AlphaNum &c = gEmptyAlphaNum, const AlphaNum &d = gEmptyAlphaNum);
Variable-Length Arrays and alloca()
We do not allow variable-length arrays or
alloca()
.
Variable-length arrays have natural-looking syntax. Both
variable-length arrays and alloca()
are very
efficient.
Variable-length arrays and alloca are not part of Standard C++. More importantly, they allocate a data-dependent amount of stack space that can trigger difficult-to-find memory overwriting bugs: "It ran fine on my machine, but dies mysteriously in production".
Use a safe allocator instead, such as
std::vector
or
std::unique_ptr<T[]>
.
Friends
We allow use of friend
classes and functions,
within reason.
Friends should usually be defined in the same file so
that the reader does not have to look in another file to
find uses of the private members of a class. A common use
of friend
is to have a
FooBuilder
class be a friend of
Foo
so that it can construct the inner state
of Foo
correctly, without exposing this
state to the world. In some cases it may be useful to
make a unittest class a friend of the class it tests.
Friends extend, but do not break, the encapsulation boundary of a class. In some cases this is better than making a member public when you want to give only one other class access to it. However, most classes should interact with other classes solely through their public members.
Exceptions
We do not use C++ exceptions.
- Exceptions allow higher levels of an application to decide how to handle "can't happen" failures in deeply nested functions, without the obscuring and error-prone bookkeeping of error codes.
- Exceptions are used by most other modern languages. Using them in C++ would make it more consistent with Python, Java, and the C++ that others are familiar with.
- Some third-party C++ libraries use exceptions, and turning them off internally makes it harder to integrate with those libraries.
- Exceptions are the only way for a constructor to
fail. We can simulate this with a factory function or
an
Init()
method, but these require heap allocation or a new "invalid" state, respectively. - Exceptions are really handy in testing frameworks.
- When you add a
throw
statement to an existing function, you must examine all of its transitive callers. Either they must make at least the basic exception safety guarantee, or they must never catch the exception and be happy with the program terminating as a result. For instance, iff()
callsg()
callsh()
, andh
throws an exception thatf
catches,g
has to be careful or it may not clean up properly. - More generally, exceptions make the control flow of programs difficult to evaluate by looking at code: functions may return in places you don't expect. This causes maintainability and debugging difficulties. You can minimize this cost via some rules on how and where exceptions can be used, but at the cost of more that a developer needs to know and understand.
- Exception safety requires both RAII and different coding practices. Lots of supporting machinery is needed to make writing correct exception-safe code easy. Further, to avoid requiring readers to understand the entire call graph, exception-safe code must isolate logic that writes to persistent state into a "commit" phase. This will have both benefits and costs (perhaps where you're forced to obfuscate code to isolate the commit). Allowing exceptions would force us to always pay those costs even when they're not worth it.
- Turning on exceptions adds data to each binary produced, increasing compile time (probably slightly) and possibly increasing address space pressure.
- The availability of exceptions may encourage developers to throw them when they are not appropriate or recover from them when it's not safe to do so. For example, invalid user input should not cause exceptions to be thrown. We would need to make the style guide even longer to document these restrictions!
On their face, the benefits of using exceptions outweigh the costs, especially in new projects. However, for existing code, the introduction of exceptions has implications on all dependent code. If exceptions can be propagated beyond a new project, it also becomes problematic to integrate the new project into existing exception-free code. Because most existing C++ code at Google is not prepared to deal with exceptions, it is comparatively difficult to adopt new code that generates exceptions.
Given that Google's existing code is not exception-tolerant, the costs of using exceptions are somewhat greater than the costs in a new project. The conversion process would be slow and error-prone. We don't believe that the available alternatives to exceptions, such as error codes and assertions, introduce a significant burden.
Our advice against using exceptions is not predicated on philosophical or moral grounds, but practical ones. Because we'd like to use our open-source projects at Google and it's difficult to do so if those projects use exceptions, we need to advise against exceptions in Google open-source projects as well. Things would probably be different if we had to do it all over again from scratch.
This prohibition also applies to the exception-related
features added in C++11, such as noexcept
,
std::exception_ptr
, and
std::nested_exception
.
There is an exception to this rule (no pun intended) for Windows code.
Run-Time Type Information (RTTI)
Avoid using Run Time Type Information (RTTI).
RTTI allows a
programmer to query the C++ class of an object at run
time. This is done by use of typeid
or
dynamic_cast
.
Querying the type of an object at run-time frequently means a design problem. Needing to know the type of an object at runtime is often an indication that the design of your class hierarchy is flawed.
Undisciplined use of RTTI makes code hard to maintain. It can lead to type-based decision trees or switch statements scattered throughout the code, all of which must be examined when making further changes.
The standard alternatives to RTTI (described below) require modification or redesign of the class hierarchy in question. Sometimes such modifications are infeasible or undesirable, particularly in widely-used or mature code.
RTTI can be useful in some unit tests. For example, it is useful in tests of factory classes where the test has to verify that a newly created object has the expected dynamic type. It is also useful in managing the relationship between objects and their mocks.
RTTI is useful when considering multiple abstract objects. Consider
bool Base::Equal(Base* other) = 0; bool Derived::Equal(Base* other) { Derived* that = dynamic_cast<Derived*>(other); if (that == NULL) return false; ... }
RTTI has legitimate uses but is prone to abuse, so you must be careful when using it. You may use it freely in unittests, but avoid it when possible in other code. In particular, think twice before using RTTI in new code. If you find yourself needing to write code that behaves differently based on the class of an object, consider one of the following alternatives to querying the type:
- Virtual methods are the preferred way of executing different code paths depending on a specific subclass type. This puts the work within the object itself.
- If the work belongs outside the object and instead in some processing code, consider a double-dispatch solution, such as the Visitor design pattern. This allows a facility outside the object itself to determine the type of class using the built-in type system.
When the logic of a program guarantees that a given
instance of a base class is in fact an instance of a
particular derived class, then a
dynamic_cast
may be used freely on the
object. Usually one
can use a static_cast
as an alternative in
such situations.
Decision trees based on type are a strong indication that your code is on the wrong track.
if (typeid(*data) == typeid(D1)) { ... } else if (typeid(*data) == typeid(D2)) { ... } else if (typeid(*data) == typeid(D3)) { ...
Code such as this usually breaks when additional subclasses are added to the class hierarchy. Moreover, when properties of a subclass change, it is difficult to find and modify all the affected code segments.
Do not hand-implement an RTTI-like workaround. The arguments against RTTI apply just as much to workarounds like class hierarchies with type tags. Moreover, workarounds disguise your true intent.
Casting
Use C++ casts like static_cast<>()
. Do
not use other cast formats like int y =
(int)x;
or int y = int(x);
.
C++ introduced a different cast system from C that distinguishes the types of cast operations.
The problem with C casts is the ambiguity of the
operation; sometimes you are doing a conversion
(e.g., (int)3.5
) and sometimes you are doing
a cast (e.g., (int)"hello"
); C++
casts avoid this. Additionally C++ casts are more visible
when searching for them.
The syntax is nasty.
Do not use C-style casts. Instead, use these C++-style casts.
- Use
static_cast
as the equivalent of a C-style cast that does value conversion, or when you need to explicitly up-cast a pointer from a class to its superclass. - Use
const_cast
to remove theconst
qualifier (see const). - Use
reinterpret_cast
to do unsafe conversions of pointer types to and from integer and other pointer types. Use this only if you know what you are doing and you understand the aliasing issues.
See the
RTTI section for guidance on the use of
dynamic_cast
.
Streams
Use streams only for logging.
Streams are a replacement for printf()
and scanf()
.
With streams, you do not need to know the type of the
object you are printing. You do not have problems with
format strings not matching the argument list. (Though
with gcc, you do not have that problem with
printf
either.) Streams have automatic
constructors and destructors that open and close the
relevant files.
Streams make it difficult to do functionality like
pread()
. Some formatting (particularly the
common format string idiom %.*s
) is
difficult if not impossible to do efficiently using
streams without using printf
-like hacks.
Streams do not support operator reordering (the
%1$s
directive), which is helpful for
internationalization.
Do not use streams, except where
required by a logging interface. Use
printf
-like routines instead.
There are various pros and cons to using streams, but in this case, as in many other cases, consistency trumps the debate. Do not use streams in your code.
Extended Discussion
There has been debate on this issue, so this explains
the reasoning in greater depth. Recall the Only One Way
guiding principle: we want to make sure that whenever we
do a certain type of I/O, the code looks the same in all
those places. Because of this, we do not want to allow
users to decide between using streams or using
printf
plus Read/Write/etc. Instead, we
should settle on one or the other. We made an exception
for logging because it is a pretty specialized
application, and for historical reasons.
Proponents of streams have argued that streams are the obvious choice of the two, but the issue is not actually so clear. For every advantage of streams they point out, there is an equivalent disadvantage. The biggest advantage is that you do not need to know the type of the object to be printing. This is a fair point. But, there is a downside: you can easily use the wrong type, and the compiler will not warn you. It is easy to make this kind of mistake without knowing when using streams.
cout << this; // Prints the address cout << *this; // Prints the contents
The compiler does not generate an error because
<<
has been overloaded. We discourage
overloading for just this reason.
Some say printf
formatting is ugly and
hard to read, but streams are often no better. Consider
the following two fragments, both with the same typo.
Which is easier to discover?
cerr << "Error connecting to '" << foo->bar()->hostname.first << ":" << foo->bar()->hostname.second << ": " << strerror(errno); fprintf(stderr, "Error connecting to '%s:%u: %s", foo->bar()->hostname.first, foo->bar()->hostname.second, strerror(errno));
And so on and so forth for any issue you might bring up. (You could argue, "Things would be better with the right wrappers," but if it is true for one scheme, is it not also true for the other? Also, remember the goal is to make the language smaller, not add yet more machinery that someone has to learn.)
Either path would yield different advantages and
disadvantages, and there is not a clearly superior
solution. The simplicity doctrine mandates we settle on
one of them though, and the majority decision was on
printf
+
read
/write
.
Preincrement and Predecrement
Use prefix form (++i
) of the increment and
decrement operators with iterators and other template
objects.
When a variable
is incremented (++i
or i++
) or
decremented (--i
or i--
) and
the value of the expression is not used, one must decide
whether to preincrement (decrement) or postincrement
(decrement).
When the return value is ignored, the "pre" form
(++i
) is never less efficient than the
"post" form (i++
), and is often more
efficient. This is because post-increment (or decrement)
requires a copy of i
to be made, which is
the value of the expression. If i
is an
iterator or other non-scalar type, copying i
could be expensive. Since the two types of increment
behave the same when the value is ignored, why not just
always pre-increment?
The tradition developed, in C, of using post-increment
when the expression value is not used, especially in
for
loops. Some find post-increment easier
to read, since the "subject" (i
) precedes
the "verb" (++
), just like in English.
For simple scalar (non-object) values there is no reason to prefer one form and we allow either. For iterators and other template types, use pre-increment.
Use of const
Use const
whenever it makes sense. With C++11,
constexpr
is a better choice for some uses of
const.
Declared variables and parameters can be preceded
by the keyword const
to indicate the variables
are not changed (e.g., const int foo
). Class
functions can have the const
qualifier to
indicate the function does not change the state of the
class member variables (e.g., class Foo { int
Bar(char c) const; };
).
Easier for people to understand how variables are being used. Allows the compiler to do better type checking, and, conceivably, generate better code. Helps people convince themselves of program correctness because they know the functions they call are limited in how they can modify your variables. Helps people know what functions are safe to use without locks in multi-threaded programs.
const
is viral: if you pass a
const
variable to a function, that function
must have const
in its prototype (or the
variable will need a const_cast
). This can
be a particular problem when calling library
functions.
const
variables, data members, methods
and arguments add a level of compile-time type checking;
it is better to detect errors as soon as possible.
Therefore we strongly recommend that you use
const
whenever it makes sense to do so:
- If a function does not modify an argument passed by
reference or by pointer, that argument should be
const
. - Declare methods to be
const
whenever possible. Accessors should almost always beconst
. Other methods should be const if they do not modify any data members, do not call any non-const
methods, and do not return a non-const
pointer or non-const
reference to a data member. - Consider making data members
const
whenever they do not need to be modified after construction.
The mutable
keyword is allowed but is
unsafe when used with threads, so thread safety should be
carefully considered first.
Where to put the const
Some people favor the form int const *foo
to const int* foo
. They argue that this is
more readable because it's more consistent: it keeps the
rule that const
always follows the object
it's describing. However, this consistency argument
doesn't apply in codebases with few deeply-nested pointer
expressions since most const
expressions
have only one const
, and it applies to the
underlying value. In such cases, there's no consistency
to maintain. Putting the const
first is
arguably more readable, since it follows English in
putting the "adjective" (const
) before the
"noun" (int
).
That said, while we encourage putting
const
first, we do not require it. But be
consistent with the code around you!
Use of constexpr
In C++11, use constexpr
to define true
constants or to ensure constant initialization.
Some variables can be declared constexpr
to indicate the variables are true constants, i.e. fixed at
compilation/link time. Some functions and constructors
can be declared constexpr
which enables them
to be used in defining a constexpr
variable.
Use of constexpr
enables definition of
constants with floating-point expressions rather than
just literals; definition of constants of user-defined
types; and definition of constants with function
calls.
Prematurely marking something as constexpr may cause migration problems if later on it has to be downgraded. Current restrictions on what is allowed in constexpr functions and constructors may invite obscure workarounds in these definitions.
constexpr
definitions enable a more
robust specification of the constant parts of an
interface. Use constexpr
to specify true
constants and the functions that support their
definitions. Avoid complexifying function definitions to
enable their use with constexpr
. Do not use
constexpr
to force inlining.
Integer Types
Of the built-in C++ integer types, the only one used
is
int
. If a program needs a variable of a
different size, use
a precise-width integer type from
<stdint.h>
, such as
int16_t
. If your variable represents a
value that could ever be greater than or equal to 2^31
(2GiB), use a 64-bit type such as
int64_t
.
Keep in mind that even if your value won't ever be too large
for an int
, it may be used in intermediate
calculations which may require a larger type. When in doubt,
choose a larger type.
C++ does not specify the sizes of its integer types.
Typically people assume that short
is 16 bits,
int
is 32 bits, long
is 32 bits
and long long
is 64 bits.
Uniformity of declaration.
The sizes of integral types in C++ can vary based on compiler and architecture.
<stdint.h>
defines types
like int16_t
, uint32_t
,
int64_t
, etc. You should always use
those in preference to short
, unsigned
long long
and the like, when you need a guarantee
on the size of an integer. Of the C integer types, only
int
should be used. When appropriate, you
are welcome to use standard types like
size_t
and ptrdiff_t
.
We use int
very often, for integers we
know are not going to be too big, e.g., loop counters.
Use plain old int
for such things. You
should assume that an int
is
at least 32 bits, but don't
assume that it has more than 32 bits. If you need a 64-bit
integer type, use
int64_t
or
uint64_t
.
For integers we know can be "big",
use
int64_t
.
You should not use the unsigned integer types such as
uint32_t
, unless there is a valid
reason such as representing a bit pattern rather than a
number, or you need defined overflow modulo 2^N. In
particular, do not use unsigned types to say a number
will never be negative. Instead, use
assertions for this.
If your code is a container that returns a size, be sure to use a type that will accommodate any possible usage of your container. When in doubt, use a larger type rather than a smaller type.
Use care when converting integer types. Integer conversions and promotions can cause non-intuitive behavior.
On Unsigned Integers
Some people, including some textbook authors, recommend using unsigned types to represent numbers that are never negative. This is intended as a form of self-documentation. However, in C, the advantages of such documentation are outweighed by the real bugs it can introduce. Consider:
for (unsigned int i = foo.Length()-1; i >= 0; --i) ...
This code will never terminate! Sometimes gcc will notice this bug and warn you, but often it will not. Equally bad bugs can occur when comparing signed and unsigned variables. Basically, C's type-promotion scheme causes unsigned types to behave differently than one might expect.
So, document that a variable is non-negative using assertions. Don't use an unsigned type.
64-bit Portability
Code should be 64-bit and 32-bit friendly. Bear in mind problems of printing, comparisons, and structure alignment.
-
printf()
specifiers for some types are not cleanly portable between 32-bit and 64-bit systems. C99 defines some portable format specifiers. Unfortunately, MSVC 7.1 does not understand some of these specifiers and the standard is missing a few, so we have to define our own ugly versions in some cases (in the style of the standard include fileinttypes.h
):// printf macros for size_t, in the style of inttypes.h #ifdef _LP64 #define __PRIS_PREFIX "z" #else #define __PRIS_PREFIX #endif // Use these macros after a % in a printf format string // to get correct 32/64 bit behavior, like this: // size_t size = records.size(); // printf("%"PRIuS"\n", size); #define PRIdS __PRIS_PREFIX "d" #define PRIxS __PRIS_PREFIX "x" #define PRIuS __PRIS_PREFIX "u" #define PRIXS __PRIS_PREFIX "X" #define PRIoS __PRIS_PREFIX "o"
Type DO NOT use DO use Notes void *
(or any pointer)%lx
%p
int64_t
%qd
,%lld
%"PRId64"
uint64_t
%qu
,%llu
,%llx
%"PRIu64"
,%"PRIx64"
size_t
%u
%"PRIuS"
,%"PRIxS"
C99 specifies %zu
ptrdiff_t
%d
%"PRIdS"
C99 specifies %td
Note that the
PRI*
macros expand to independent strings which are concatenated by the compiler. Hence if you are using a non-constant format string, you need to insert the value of the macro into the format, rather than the name. It is still possible, as usual, to include length specifiers, etc., after the%
when using thePRI*
macros. So, e.g.printf("x = %30"PRIuS"\n", x)
would expand on 32-bit Linux toprintf("x = %30" "u" "\n", x)
, which the compiler will treat asprintf("x = %30u\n", x)
. - Remember that
sizeof(void *)
!=sizeof(int)
. Useintptr_t
if you want a pointer-sized integer. - You may need to be careful with structure
alignments, particularly for structures being stored on
disk. Any class/structure with a
int64_t
/uint64_t
member will by default end up being 8-byte aligned on a 64-bit system. If you have such structures being shared on disk between 32-bit and 64-bit code, you will need to ensure that they are packed the same on both architectures. Most compilers offer a way to alter structure alignment. For gcc, you can use__attribute__((packed))
. MSVC offers#pragma pack()
and__declspec(align())
. -
Use the
LL
orULL
suffixes as needed to create 64-bit constants. For example:int64_t my_value = 0x123456789LL; uint64_t my_mask = 3ULL << 48;
- If you really need different code on 32-bit and
64-bit systems, use
#ifdef _LP64
to choose between the code variants. (But please avoid this if possible, and keep any such changes localized.)
Preprocessor Macros
Be very cautious with macros. Prefer inline functions,
enums, and const
variables to macros.
Macros mean that the code you see is not the same as the code the compiler sees. This can introduce unexpected behavior, especially since macros have global scope.
Luckily, macros are not nearly as necessary in C++ as
they are in C. Instead of using a macro to inline
performance-critical code, use an inline function.
Instead of using a macro to store a constant, use a
const
variable. Instead of using a macro to
"abbreviate" a long variable name, use a reference.
Instead of using a macro to conditionally compile code
... well, don't do that at all (except, of course, for
the #define
guards to prevent double
inclusion of header files). It makes testing much more
difficult.
Macros can do things these other techniques cannot, and you do see them in the codebase, especially in the lower-level libraries. And some of their special features (like stringifying, concatenation, and so forth) are not available through the language proper. But before using a macro, consider carefully whether there's a non-macro way to achieve the same result.
The following usage pattern will avoid many problems with macros; if you use macros, follow it whenever possible:
- Don't define macros in a
.h
file. #define
macros right before you use them, and#undef
them right after.- Do not just
#undef
an existing macro before replacing it with your own; instead, pick a name that's likely to be unique. - Try not to use macros that expand to unbalanced C++ constructs, or at least document that behavior well.
- Prefer not using
##
to generate function/class/variable names.
0 and nullptr/NULL
Use 0
for integers, 0.0
for
reals, nullptr
(or NULL
) for
pointers, and '\0'
for chars.
Use 0
for integers and 0.0
for reals. This is not controversial.
For
pointers (address values), there is a choice between
0
, NULL
, and
nullptr
. For projects that allow C++11
features, use nullptr
. For C++03 projects,
we prefer NULL
because it looks like a
pointer. In fact, some C++ compilers provide special
definitions of NULL
which enable them to
give useful warnings, particularly in situations where
sizeof(NULL)
is not equal to
sizeof(0)
.
Use '\0'
for chars. This is the correct
type and also makes code more readable.
sizeof
Prefer sizeof(varname)
to
sizeof(type)
.
Use sizeof(varname)
when you
take the size of a particular variable.
sizeof(varname)
will update
appropriately if someone changes the variable type either
now or later. You may use
sizeof(type)
for code unrelated
to any particular variable, such as code that manages an
external or internal data format where a variable of an
appropriate C++ type is not convenient.
Struct data; memset(&data, 0, sizeof(data));
memset(&data, 0, sizeof(Struct));
if (raw_size < sizeof(int)) { LOG(ERROR) << "compressed record not big enough for count: " << raw_size; return false; }
auto
Use auto
to avoid type names that are just
clutter. Continue to use manifest type declarations when it
helps readability, and never use auto
for
anything but local variables.
In C++11, a variable whose type is given as auto
will be given a type that matches that of the expression used to
initialize it. You can use auto
either to
initialize a variable by copying, or to bind a
reference.
vector<string> v; ... auto s1 = v[0]; // Makes a copy of v[0]. const auto& s2 = v[0]; // s2 is a reference to v[0].
C++ type names can sometimes be long and cumbersome, especially when they involve templates or namespaces. In a statement like:
sparse_hash_map<string, int>::iterator iter = m.find(val);
the return type is hard to read, and obscures the primary purpose of the statement. Changing it to:
auto iter = m.find(val);
makes it more readable.
Without auto
we are sometimes forced to
write a type name twice in the same expression, adding no
value for the reader, as in:
diagnostics::ErrorStatus* status = new diagnostics::ErrorStatus("xyz");
Using auto
makes it easier to use
intermediate variables when appropriate, by reducing the
burden of writing their types explicitly.
Sometimes code is clearer when types are manifest, especially when a variable's initialization depends on things that were declared far away. In an expression like:
auto i = x.Lookup(key);
it may not be obvious what i
's type is,
if x
was declared hundreds of lines earlier.
Programmers have to understand the difference between
auto
and const auto&
or
they'll get copies when they didn't mean to.
The interaction between auto
and C++11
brace-initialization can be confusing. The
declarations:
auto x(3); // Note: parentheses. auto y{3}; // Note: curly braces.
mean different things —
x
is an int
, while
y
is a std::initializer_list<int>
.
The same applies to other normally-invisible proxy types.
If an auto
variable is used as part of an
interface, e.g. as a constant in a header, then a
programmer might change its type while only intending to
change its value, leading to a more radical API change
than intended.
auto
is permitted, for local variables
only. Do not use auto
for file-scope or
namespace-scope variables, or for class members. Never
initialize an auto
-typed variable with
a braced initializer list.
The auto
keyword is also used in an
unrelated C++11 feature: it's part of the syntax for a
new kind of function declaration with a trailing return
type. Trailing return types are permitted only in lambda
expressions.
Braced Initializer List
You may use braced initializer lists.
In C++03, aggregate types (arrays and structs with no constructor) could be initialized with braced initializer lists.
struct Point { int x; int y; }; Point p = {1, 2};
In C++11, this syntax was generalized, and any object type can now be created with a braced initializer list, known as a braced-init-list in the C++ grammar. Here are a few examples of its use.
// Vector takes a braced-init-list of elements. vector<string> v{"foo", "bar"}; // Basically the same, ignoring some small technicalities. // You may choose to use either form. vector<string> v = {"foo", "bar"}; // Usable with 'new' expressions. auto p = new vector<string>{"foo", "bar"}; // A map can take a list of pairs. Nested braced-init-lists work. map<int, string> m = {{1, "one"}, {2, "2"}}; // A braced-init-list can be implicitly converted to a return type. vector<int> test_function() { return {1, 2, 3}; } // Iterate over a braced-init-list. for (int i : {-1, -2, -3}) {} // Call a function using a braced-init-list. void TestFunction2(vector<int> v) {} TestFunction2({1, 2, 3});
A user-defined type can also define a constructor and/or assignment operator
that take std::initializer_list<T>
, which is automatically
created from braced-init-list:
class MyType { public: // std::initializer_list references the underlying init list. // It should be passed by value. MyType(std::initializer_list<int> init_list) { for (int i : init_list) append(i); } MyType& operator=(std::initializer_list<int> init_list) { clear(); for (int i : init_list) append(i); } }; MyType m{2, 3, 5, 7};
Finally, brace initialization can also call ordinary
constructors of data types, even if they do not have
std::initializer_list<T>
constructors.
double d{1.23}; // Calls ordinary constructor as long as MyOtherType has no // std::initializer_list constructor. class MyOtherType { public: explicit MyOtherType(string); MyOtherType(int, string); }; MyOtherType m = {1, "b"}; // If the constructor is explicit, you can't use the "= {}" form. MyOtherType m{"b"};
Never assign a braced-init-list to an auto local variable. In the single element case, what this means can be confusing.
auto d = {1.23}; // d is a std::initializer_list<double>
auto d = double{1.23}; // Good -- d is a double, not a std::initializer_list.
See Braced_Initializer_List_Format for formatting.
Lambda expressions
Use lambda expressions where appropriate. Do not use default lambda captures; write all captures explicitly.
Lambda expressions are a concise way of creating anonymous function objects. They're often useful when passing functions as arguments. For example:
std::sort(v.begin(), v.end(), [](int x, int y) { return Weight(x) < Weight(y); });
Lambdas were introduced in C++11 along with a set of utilities
for working with function objects, such as the polymorphic
wrapper std::function
.
- Lambdas are much more concise than other ways of defining function objects to be passed to STL algorithms, which can be a readability improvement.
- Lambdas,
std::function
, andstd::bind
can be used in combination as a general purpose callback mechanism; they make it easy to write functions that take bound functions as arguments.
- Variable capture in lambdas can be tricky, and might be a new source of dangling-pointer bugs.
- It's possible for use of lambdas to get out of hand; very long nested anonymous functions can make code harder to understand.
- Use lambda expressions where appropriate, with formatting as described below.
- Do not use default captures; write all lambda captures explicitly.
For example, instead of
[=](int x) { return x + n; }
you should write[n](int x) { return x + n; }
so that readers can see immediately thatn
is being captured (by value). - Keep unnamed lambdas short. If a lambda body is more than maybe five lines long, prefer to give the lambda a name, or to use a named function instead of a lambda.
- Specify the return type of the lambda explicitly if that will
make it more obvious to readers, as with
auto
.
Template metaprogramming
Avoid complicated template programming.
Template metaprogramming refers to a family of techniques that exploit the fact that the C++ template instantiation mechanism is Turing complete and can be used to perform arbitrary compile-time computation in the type domain.
Template metaprogramming allows extremely flexible interfaces that
are type safe and high performance. Facilities like
Google Test,
std::tuple
, std::function
, and
Boost.Spirit would be impossible without it.
The techniques used in template metaprogramming are often obscure to anyone but language experts. Code that uses templates in complicated ways is often unreadable, and is hard to debug or maintain.
Template metaprogramming often leads to extremely poor compiler time error messages: even if an interface is simple, the complicated implementation details become visible when the user does something wrong.
Template metaprogramming interferes with large scale refactoring by making the job of refactoring tools harder. First, the template code is expanded in multiple contexts, and it's hard to verify that the transformation makes sense in all of them. Second, some refactoring tools work with an AST that only represents the structure of the code after template expansion. It can be difficult to automatically work back to the original source construct that needs to be rewritten.
Template metaprogramming sometimes allows cleaner and easier-to-use interfaces than would be possible without it, but it's also often a temptation to be overly clever. It's best used in a small number of low level components where the extra maintenance burden is spread out over a large number of uses.
Think twice before using template metaprogramming or other
complicated template techniques; think about whether the average
member of your team will be able to understand your code well enough
to maintain it after you switch to another project, or whether a
non-C++ programmer or someone casually browsing the code base will be
able to understand the error messages or trace the flow of a function
they want to call. If you're using recursive template instantiations
or type lists or metafunctions or expression templates, or relying on
SFINAE or on the sizeof
trick for detecting function
overload resolution, then there's a good chance you've gone too
far.
If you use template metaprogramming, you should expect to put considerable effort into minimizing and isolating the complexity. You should hide metaprogramming as an implementation detail whenever possible, so that user-facing headers are readable, and you should make sure that tricky code is especially well commented. You should carefully document how the code is used, and you should say something about what the "generated" code looks like. Pay extra attention to the error messages that the compiler emits when users make mistakes. The error messages are part of your user interface, and your code should be tweaked as necessary so that the error messages are understandable and actionable from a user point of view.
Boost
Use only approved libraries from the Boost library collection.
The Boost library collection is a popular collection of peer-reviewed, free, open-source C++ libraries.
Boost code is generally very high-quality, is widely portable, and fills many important gaps in the C++ standard library, such as type traits and better binders.
Some Boost libraries encourage coding practices which can hamper readability, such as metaprogramming and other advanced template techniques, and an excessively "functional" style of programming.
In order to maintain a high level of readability for all contributors who might read and maintain code, we only allow an approved subset of Boost features. Currently, the following libraries are permitted:
-
Call Traits from
boost/call_traits.hpp
-
Compressed Pair from
boost/compressed_pair.hpp
-
The Boost Graph Library (BGL) from
boost/graph
, except serialization (adj_list_serialize.hpp
) and parallel/distributed algorithms and data structures (boost/graph/parallel/*
andboost/graph/distributed/*
). -
Property Map from
boost/property_map
, except parallel/distributed property maps (boost/property_map/parallel/*
). - The part of
Iterator that deals with defining iterators:
boost/iterator/iterator_adaptor.hpp
,boost/iterator/iterator_facade.hpp
, andboost/function_output_iterator.hpp
- The part of
Polygon that deals with Voronoi diagram
construction and doesn't depend on the rest of
Polygon:
boost/polygon/voronoi_builder.hpp
,boost/polygon/voronoi_diagram.hpp
, andboost/polygon/voronoi_geometry_type.hpp
-
Bimap from
boost/bimap
-
Statistical Distributions and Functions from
boost/math/distributions
-
Multi-index from
boost/multi_index
-
Heap from
boost/heap
- The flat containers from
Container:
boost/container/flat_map
, andboost/container/flat_set
We are actively considering adding other Boost features to the list, so this list may be expanded in the future.
The following libraries are permitted, but their use is discouraged because they've been superseded by standard libraries in C++11:
-
Array from
boost/array.hpp
: usestd::array
instead. -
Pointer Container from
boost/ptr_container
: use containers ofstd::unique_ptr
instead.
C++11
Use libraries and language extensions from C++11 (formerly known as C++0x) when appropriate. Consider portability to other environments before using C++11 features in your project.
C++11 contains significant changes both to the language and libraries.
C++11 was the official standard until august 2014, and is supported by most C++ compilers. It standardizes some common C++ extensions that we use already, allows shorthands for some operations, and has some performance and safety improvements.
The C++11 standard is substantially more complex than its predecessor (1,300 pages versus 800 pages), and is unfamiliar to many developers. The long-term effects of some features on code readability and maintenance are unknown. We cannot predict when its various features will be implemented uniformly by tools that may be of interest, particularly in the case of projects that are forced to use older versions of tools.
As with Boost, some C++11 extensions encourage coding practices that hamper readability—for example by removing checked redundancy (such as type names) that may be helpful to readers, or by encouraging template metaprogramming. Other extensions duplicate functionality available through existing mechanisms, which may lead to confusion and conversion costs.
C++11 features may be used unless specified otherwise. In addition to what's described in the rest of the style guide, the following C++11 features may not be used:
- Functions (other than lambda functions)
with trailing return types, e.g. writing
auto foo() -> int;
instead ofint foo();
, because of a desire to preserve stylistic consistency with the many existing function declarations. - Compile-time rational numbers
(
<ratio>
), because of concerns that it's tied to a more template-heavy interface style. - The
<cfenv>
and<fenv.h>
headers, because many compilers do not support those features reliably. - Default lambda captures.
Naming
The most important consistency rules are those that govern naming. The style of a name immediately informs us what sort of thing the named entity is: a type, a variable, a function, a constant, a macro, etc., without requiring us to search for the declaration of that entity. The pattern-matching engine in our brains relies a great deal on these naming rules.
Naming rules are pretty arbitrary, but we feel that consistency is more important than individual preferences in this area, so regardless of whether you find them sensible or not, the rules are the rules.
General Naming Rules
Function names, variable names, and filenames should be descriptive; eschew abbreviation.
Give as descriptive a name as possible, within reason. Do not worry about saving horizontal space as it is far more important to make your code immediately understandable by a new reader. Do not use abbreviations that are ambiguous or unfamiliar to readers outside your project, and do not abbreviate by deleting letters within a word.
int price_count_reader; // No abbreviation. int num_errors; // "num" is a widespread convention. int num_dns_connections; // Most people know what "DNS" stands for.
int n; // Meaningless. int nerr; // Ambiguous abbreviation. int n_comp_conns; // Ambiguous abbreviation. int wgc_connections; // Only your group knows what this stands for. int pc_reader; // Lots of things can be abbreviated "pc". int cstmr_id; // Deletes internal letters.
File Names
Filenames should be all lowercase and can include
underscores (_
) or dashes (-
).
Follow the convention that your
project uses. If there is no consistent
local pattern to follow, prefer "_".
Examples of acceptable file names:
my_useful_class.cc
my-useful-class.cc
myusefulclass.cc
myusefulclass_test.cc // _unittest and _regtest are deprecated.
C++ files should end in .cc
and header files should end in
.h
. Files that rely on being textually included at specific points
should end in .inc
(see also the section on
self-contained headers).
Do not use filenames that already exist in
/usr/include
, such as db.h
.
In general, make your filenames very specific. For
example, use http_server_logs.h
rather than
logs.h
. A very common case is to have a pair
of files called, e.g., foo_bar.h
and
foo_bar.cc
, defining a class called
FooBar
.
Inline functions must be in a .h
file. If
your inline functions are very short, they should go
directly into your .h
file.
Type Names
Type names start with a capital letter and have a capital
letter for each new word, with no underscores:
MyExcitingClass
, MyExcitingEnum
.
The names of all types — classes, structs, typedefs, and enums — have the same naming convention. Type names should start with a capital letter and have a capital letter for each new word. No underscores. For example:
// classes and structs class UrlTable { ... class UrlTableTester { ... struct UrlTableProperties { ... // typedefs typedef hash_map<UrlTableProperties *, string> PropertiesMap; // enums enum UrlTableErrors { ...
Variable Names
The names of variables and data members are all lowercase, with
underscores between words. Data members of classes (but not structs)
additionally have trailing underscores. For instance:
a_local_variable
, a_struct_data_member
,
a_class_data_member_
.
Common Variable names
For example:
string table_name; // OK - uses underscore. string tablename; // OK - all lowercase.
string tableName; // Bad - mixed case.
Class Data Members
Data members of classes, both static and non-static, are named like ordinary nonmember variables, but with a trailing underscore.
class TableInfo { ... private: string table_name_; // OK - underscore at end. string tablename_; // OK. static Pool<TableInfo>* pool_; // OK. };
Struct Data Members
Data members of structs, both static and non-static, are named like ordinary nonmember variables. They do not have the trailing underscores that data members in classes have.
struct UrlTableProperties { string name; int num_entries; static Pool<UrlTableProperties>* pool; };
See Structs vs. Classes for a discussion of when to use a struct versus a class.
Global Variables
There are no special requirements for global
variables, which should be rare in any case, but if you
use one, consider prefixing it with g_
or
some other marker to easily distinguish it from local
variables.
Constant Names
Use a k
followed by mixed case, e.g.,
kDaysInAWeek
, for constants defined globally or within a class.
As a convenience to the reader, compile-time constants of global or class scope
follow a different naming convention from other variables.
Use a k
followed by words with uppercase first letters:
const int kDaysInAWeek = 7;
This convention may optionally be used for compile-time constants of local scope; otherwise the usual variable naming rules apply.
Function Names
Regular functions have mixed case; accessors and mutators
match the name of the variable:
MyExcitingFunction()
,
MyExcitingMethod()
,
my_exciting_member_variable()
,
set_my_exciting_member_variable()
.
Regular Functions
Functions should start with a capital letter and have a capital letter for each new word. No underscores.
If your function crashes upon an error, you should append OrDie to the function name. This only applies to functions which could be used by production code and to errors that are reasonably likely to occur during normal operation.
AddTableEntry() DeleteUrl() OpenFileOrDie()
Accessors and Mutators
Accessors and mutators (get and set functions) should
match the name of the variable they are getting and
setting. This shows an excerpt of a class whose instance
variable is num_entries_
.
class MyClass { public: ... int num_entries() const { return num_entries_; } void set_num_entries(int num_entries) { num_entries_ = num_entries; } private: int num_entries_; };
You may also use lowercase letters for other very short inlined functions. For example if a function were so cheap you would not cache the value if you were calling it in a loop, then lowercase naming would be acceptable.
Namespace Names
Namespace names are all lower-case,
and based on project names and possibly their directory
structure: google_awesome_project
.
See Namespaces for a discussion of namespaces and how to name them.
Enumerator Names
Preferably, the individual enumerators should be named
like constants. However, it
is also acceptable to name them like
macros. The enumeration name,
UrlTableErrors
(and
AlternateUrlTableErrors
), is a type, and
therefore mixed case.
enum UrlTableErrors { kOK = 0, kErrorOutOfMemory, kErrorMalformedInput, }; enum AlternateUrlTableErrors { OK = 0, OUT_OF_MEMORY = 1, MALFORMED_INPUT = 2, };
Until January 2009, the style was to name enum values like macros. This caused problems with name collisions between enum values and macros. Hence, the change to prefer constant-style naming was put in place. New code should prefer constant-style naming if possible. However, there is no reason to change old code to use constant-style names, unless the old names are actually causing a compile-time problem.
Macro Names
You're not really going to
define a macro, are you? If you do, they're like this:
MY_MACRO_THAT_SCARES_SMALL_CHILDREN
.
Please see the description of macros; in general macros should not be used. However, if they are absolutely needed, then they should be named with all capitals and underscores.
#define ROUND(x) ... #define PI_ROUNDED 3.0
Exceptions to Naming Rules
If you are naming something that is analogous to an existing C or C++ entity then you can follow the existing naming convention scheme.
bigopen()
- function name, follows form of
open()
uint
typedef
bigpos
struct
orclass
, follows form ofpos
sparse_hash_map
- STL-like entity; follows STL naming conventions
LONGLONG_MAX
- a constant, as in
INT_MAX
Comments
Though a pain to write, comments are absolutely vital to keeping our code readable. The following rules describe what you should comment and where. But remember: while comments are very important, the best code is self-documenting. Giving sensible names to types and variables is much better than using obscure names that you must then explain through comments.
When writing your comments, write for your audience: the next contributor who will need to understand your code. Be generous — the next one may be you!
Comment Style
Use either the //
or /* */
syntax, as long as you are consistent.
You can use either the //
or the /*
*/
syntax; however, //
is
much more common. Be consistent with how you
comment and what style you use where.
File Comments
Start each file with license boilerplate, followed by a description of its contents.
Legal Notice and Author Line
Every file should contain license boilerplate. Choose the appropriate boilerplate for the license used by the project (for example, Apache 2.0, BSD, LGPL, GPL).
If you make significant changes to a file with an author line, consider deleting the author line.
File Contents
Every file should have a comment at the top describing its contents.
Generally a .h
file will describe the
classes that are declared in the file with an overview of
what they are for and how they are used. A
.cc
file should contain more information
about implementation details or discussions of tricky
algorithms. If you feel the implementation details or a
discussion of the algorithms would be useful for someone
reading the .h
, feel free to put it there
instead, but mention in the .cc
that the
documentation is in the .h
file.
Do not duplicate comments in both the .h
and the .cc
. Duplicated comments
diverge.
Class Comments
Every class definition should have an accompanying comment that describes what it is for and how it should be used.
// Iterates over the contents of a GargantuanTable. Sample usage: // GargantuanTableIterator* iter = table->NewIterator(); // for (iter->Seek("foo"); !iter->done(); iter->Next()) { // process(iter->key(), iter->value()); // } // delete iter; class GargantuanTableIterator { ... };
If you have already described a class in detail in the comments at the top of your file feel free to simply state "See comment at top of file for a complete description", but be sure to have some sort of comment.
Document the synchronization assumptions the class makes, if any. If an instance of the class can be accessed by multiple threads, take extra care to document the rules and invariants surrounding multithreaded use.
Function Comments
Declaration comments describe use of the function; comments at the definition of a function describe operation.
Function Declarations
Every function declaration should have comments immediately preceding it that describe what the function does and how to use it. These comments should be descriptive ("Opens the file") rather than imperative ("Open the file"); the comment describes the function, it does not tell the function what to do. In general, these comments do not describe how the function performs its task. Instead, that should be left to comments in the function definition.
Types of things to mention in comments at the function declaration:
- What the inputs and outputs are.
- For class member functions: whether the object remembers reference arguments beyond the duration of the method call, and whether it will free them or not.
- If the function allocates memory that the caller must free.
- Whether any of the arguments can be a null pointer.
- If there are any performance implications of how a function is used.
- If the function is re-entrant. What are its synchronization assumptions?
Here is an example:
// Returns an iterator for this table. It is the client's // responsibility to delete the iterator when it is done with it, // and it must not use the iterator once the GargantuanTable object // on which the iterator was created has been deleted. // // The iterator is initially positioned at the beginning of the table. // // This method is equivalent to: // Iterator* iter = table->NewIterator(); // iter->Seek(""); // return iter; // If you are going to immediately seek to another place in the // returned iterator, it will be faster to use NewIterator() // and avoid the extra seek. Iterator* GetIterator() const;
However, do not be unnecessarily verbose or state the completely obvious. Notice below that it is not necessary to say "returns false otherwise" because this is implied.
// Returns true if the table cannot hold any more entries. bool IsTableFull();
When commenting constructors and destructors, remember that the person reading your code knows what constructors and destructors are for, so comments that just say something like "destroys this object" are not useful. Document what constructors do with their arguments (for example, if they take ownership of pointers), and what cleanup the destructor does. If this is trivial, just skip the comment. It is quite common for destructors not to have a header comment.
Function Definitions
If there is anything tricky about how a function does its job, the function definition should have an explanatory comment. For example, in the definition comment you might describe any coding tricks you use, give an overview of the steps you go through, or explain why you chose to implement the function in the way you did rather than using a viable alternative. For instance, you might mention why it must acquire a lock for the first half of the function but why it is not needed for the second half.
Note you should not just repeat the comments
given with the function declaration, in the
.h
file or wherever. It's okay to
recapitulate briefly what the function does, but the
focus of the comments should be on how it does it.
Variable Comments
In general the actual name of the variable should be descriptive enough to give a good idea of what the variable is used for. In certain cases, more comments are required.
Class Data Members
Each class data member (also called an instance variable or member variable) should have a comment describing what it is used for. If the variable can take sentinel values with special meanings, such as a null pointer or -1, document this. For example:
private: // Keeps track of the total number of entries in the table. // Used to ensure we do not go over the limit. -1 means // that we don't yet know how many entries the table has. int num_total_entries_;
Global Variables
As with data members, all global variables should have a comment describing what they are and what they are used for. For example:
// The total number of tests cases that we run through in this regression test. const int kNumTestCases = 6;
Implementation Comments
In your implementation you should have comments in tricky, non-obvious, interesting, or important parts of your code.
Explanatory Comments
Tricky or complicated code blocks should have comments before them. Example:
// Divide result by two, taking into account that x // contains the carry from the add. for (int i = 0; i < result->size(); i++) { x = (x << 8) + (*result)[i]; (*result)[i] = x >> 1; x &= 1; }
Line Comments
Also, lines that are non-obvious should get a comment at the end of the line. These end-of-line comments should be separated from the code by 2 spaces. Example:
// If we have enough memory, mmap the data portion too. mmap_budget = max<int64>(0, mmap_budget - index_->length()); if (mmap_budget >= data_size_ && !MmapData(mmap_chunk_bytes, mlock)) return; // Error already logged.
Note that there are both comments that describe what the code is doing, and comments that mention that an error has already been logged when the function returns.
If you have several comments on subsequent lines, it can often be more readable to line them up:
DoSomething(); // Comment here so the comments line up. DoSomethingElseThatIsLonger(); // Two spaces between the code and the comment. { // One space before comment when opening a new scope is allowed, // thus the comment lines up with the following comments and code. DoSomethingElse(); // Two spaces before line comments normally. } vector<string> list{// Comments in braced lists describe the next element .. "First item", // .. and should be aligned appropriately. "Second item"}; DoSomething(); /* For trailing block comments, one space is fine. */
nullptr/NULL, true/false, 1, 2, 3...
When you pass in a null pointer, boolean, or literal integer values to functions, you should consider adding a comment about what they are, or make your code self-documenting by using constants. For example, compare:
bool success = CalculateSomething(interesting_value, 10, false, NULL); // What are these arguments??
versus:
bool success = CalculateSomething(interesting_value, 10, // Default base value. false, // Not the first time we're calling this. NULL); // No callback.
Or alternatively, constants or self-describing variables:
const int kDefaultBaseValue = 10; const bool kFirstTimeCalling = false; Callback *null_callback = NULL; bool success = CalculateSomething(interesting_value, kDefaultBaseValue, kFirstTimeCalling, null_callback);
Don'ts
Note that you should never describe the code itself. Assume that the person reading the code knows C++ better than you do, even though he or she does not know what you are trying to do:
// Now go through the b array and make sure that if i occurs, // the next element is i+1. ... // Geez. What a useless comment.
Punctuation, Spelling and Grammar
Pay attention to punctuation, spelling, and grammar; it is easier to read well-written comments than badly written ones.
Comments should be as readable as narrative text, with proper capitalization and punctuation. In many cases, complete sentences are more readable than sentence fragments. Shorter comments, such as comments at the end of a line of code, can sometimes be less formal, but you should be consistent with your style.
Although it can be frustrating to have a code reviewer point out that you are using a comma when you should be using a semicolon, it is very important that source code maintain a high level of clarity and readability. Proper punctuation, spelling, and grammar help with that goal.
TODO Comments
Use TODO
comments for code that is temporary,
a short-term solution, or good-enough but not perfect.
TODO
s should include the string
TODO
in all caps, followed by the
name, e-mail address, or other
identifier of the person
with the best context
about the problem referenced by the TODO
. The
main purpose is to have a consistent TODO
that
can be searched to find out how to get more details upon
request. A TODO
is not a commitment that the
person referenced will fix the problem. Thus when you create
a TODO
, it is almost always your
name
that is given.
// TODO(kl@gmail.com): Use a "*" here for concatenation operator. // TODO(Zeke) change this to use relations.
If your TODO
is of the form "At a future
date do something" make sure that you either include a
very specific date ("Fix by November 2005") or a very
specific event ("Remove this code when all clients can
handle XML responses.").
Deprecation Comments
Mark deprecated interface points with DEPRECATED
comments.
You can mark an interface as deprecated by writing a
comment containing the word DEPRECATED
in
all caps. The comment goes either before the declaration
of the interface or on the same line as the
declaration.
After the word
DEPRECATED
, write your name, e-mail address,
or other identifier in parentheses.
A deprecation comment must include simple, clear directions for people to fix their callsites. In C++, you can implement a deprecated function as an inline function that calls the new interface point.
Marking an interface point DEPRECATED
will not magically cause any callsites to change. If you
want people to actually stop using the deprecated
facility, you will have to fix the callsites yourself or
recruit a crew to help you.
New code should not contain calls to deprecated interface points. Use the new interface point instead. If you cannot understand the directions, find the person who created the deprecation and ask them for help using the new interface point.
Formatting
Coding style and formatting are pretty arbitrary, but a project is much easier to follow if everyone uses the same style. Individuals may not agree with every aspect of the formatting rules, and some of the rules may take some getting used to, but it is important that all project contributors follow the style rules so that they can all read and understand everyone's code easily.
To help you format code correctly, we've created a settings file for emacs.
Line Length
Each line of text in your code should be at most 80 characters long.
We recognize that this rule is controversial, but so much existing code already adheres to it, and we feel that consistency is important.
Those who favor this rule argue that it is rude to force them to resize their windows and there is no need for anything longer. Some folks are used to having several code windows side-by-side, and thus don't have room to widen their windows in any case. People set up their work environment assuming a particular maximum window width, and 80 columns has been the traditional standard. Why change it?
Proponents of change argue that a wider line can make code more readable. The 80-column limit is an hidebound throwback to 1960s mainframes; modern equipment has wide screens that can easily show longer lines.
80 characters is the maximum.
If a comment line contains an example command or a literal URL longer than 80 characters, that line may be longer than 80 characters for ease of cut and paste.
A raw-string literal may have content that exceeds 80 characters. Except for test code, such literals should appear near top of a file.
An #include
statement with a
long path may exceed 80 columns.
You needn't be concerned about header guards that exceed the maximum length.
Non-ASCII Characters
Non-ASCII characters should be rare, and must use UTF-8 formatting.
You shouldn't hard-code user-facing text in source, even English, so use of non-ASCII characters should be rare. However, in certain cases it is appropriate to include such words in your code. For example, if your code parses data files from foreign sources, it may be appropriate to hard-code the non-ASCII string(s) used in those data files as delimiters. More commonly, unittest code (which does not need to be localized) might contain non-ASCII strings. In such cases, you should use UTF-8, since that is an encoding understood by most tools able to handle more than just ASCII.
Hex encoding is also OK, and encouraged where it
enhances readability — for example,
"\xEF\xBB\xBF"
, or, even more simply,
u8"\uFEFF"
, is the Unicode zero-width
no-break space character, which would be invisible if
included in the source as straight UTF-8.
Use the u8
prefix
to guarantee that a string literal containing
\uXXXX
escape sequences is encoded as UTF-8.
Do not use it for strings containing non-ASCII characters
encoded as UTF-8, because that will produce incorrect
output if the compiler does not interpret the source file
as UTF-8.
You shouldn't use the C++11 char16_t
and
char32_t
character types, since they're for
non-UTF-8 text. For similar reasons you also shouldn't
use wchar_t
(unless you're writing code that
interacts with the Windows API, which uses
wchar_t
extensively).
Spaces vs. Tabs
Use only spaces, and indent 2 spaces at a time.
We use spaces for indentation. Do not use tabs in your code. You should set your editor to emit spaces when you hit the tab key.
Function Declarations and Definitions
Return type on the same line as function name, parameters on the same line if they fit. Wrap parameter lists which do not fit on a single line as you would wrap arguments in a function call.
Functions look like this:
ReturnType ClassName::FunctionName(Type par_name1, Type par_name2) { DoSomething(); ... }
If you have too much text to fit on one line:
ReturnType ClassName::ReallyLongFunctionName(Type par_name1, Type par_name2, Type par_name3) { DoSomething(); ... }
or if you cannot fit even the first parameter:
ReturnType LongClassName::ReallyReallyReallyLongFunctionName( Type par_name1, // 4 space indent Type par_name2, Type par_name3) { DoSomething(); // 2 space indent ... }
Some points to note:
- If you cannot fit the return type and the function name on a single line, break between them.
- If you break after the return type of a function declaration or definition, do not indent.
- The open parenthesis is always on the same line as the function name.
- There is never a space between the function name and the open parenthesis.
- There is never a space between the parentheses and the parameters.
- The open curly brace is always at the end of the same line as the last parameter.
- The close curly brace is either on the last line by itself or (if other style rules permit) on the same line as the open curly brace.
- There should be a space between the close parenthesis and the open curly brace.
- All parameters should be named, with identical names in the declaration and implementation.
- All parameters should be aligned if possible.
- Default indentation is 2 spaces.
- Wrapped parameters have a 4 space indent.
If some parameters are unused, comment out the variable name in the function definition:
// Always have named parameters in interfaces. class Shape { public: virtual void Rotate(double radians) = 0; }; // Always have named parameters in the declaration. class Circle : public Shape { public: virtual void Rotate(double radians); }; // Comment out unused named parameters in definitions. void Circle::Rotate(double /*radians*/) {}
// Bad - if someone wants to implement later, it's not clear what the // variable means. void Circle::Rotate(double) {}
Lambda Expressions
Format parameters and bodies as for any other function, and capture lists like other comma-separated lists.
For by-reference captures, do not leave a space between the ampersand (&) and the variable name.
int x = 0; auto add_to_x = [&x](int n) { x += n; };
Short lambdas may be written inline as function arguments.
std::set<int> blacklist = {7, 8, 9}; std::vector<int> digits = {3, 9, 1, 8, 4, 7, 1}; digits.erase(std::remove_if(digits.begin(), digits.end(), [&blacklist](int i) { return blacklist.find(i) != blacklist.end(); }), digits.end());
Function Calls
Either write the call all on a single line, wrap the arguments at the parenthesis, or start the arguments on a new line indented by four spaces and continue at that 4 space indent. In the absence of other considerations, use the minimum number of lines, including placing multiple arguments on each line where appropriate.
Function calls have the following format:
bool retval = DoSomething(argument1, argument2, argument3);
If the arguments do not all fit on one line, they should be broken up onto multiple lines, with each subsequent line aligned with the first argument. Do not add spaces after the open paren or before the close paren:
bool retval = DoSomething(averyveryveryverylongargument1, argument2, argument3);
Arguments may optionally all be placed on subsequent lines with a four space indent:
if (...) { ... ... if (...) { DoSomething( argument1, argument2, // 4 space indent argument3, argument4); }
Put multiple arguments on a single line to reduce the number of lines necessary for calling a function unless there is a specific readability problem. Some find that formatting with strictly one argument on each line is more readable and simplifies editing of the arguments. However, we prioritize for the reader over the ease of editing arguments, and most readability problems are better addressed with the following techniques.
If having multiple arguments in a single line decreases readability due to the complexity or confusing nature of the expressions that make up some arguments, try creating variables that capture those arguments in a descriptive name:
int my_heuristic = scores[x] * y + bases[x]; bool retval = DoSomething(my_heuristic, x, y, z);
Or put the confusing argument on its own line with an explanatory comment:
bool retval = DoSomething(scores[x] * y + bases[x], // Score heuristic. x, y, z);
If there is still a case where one argument is significantly more readable on its own line, then put it on its own line. The decision should be specific to the argument which is made more readable rather than a general policy.
Sometimes arguments form a structure that is important for readability. In those cases, feel free to format the arguments according to that structure:
// Transform the widget by a 3x3 matrix. my_widget.Transform(x1, x2, x3, y1, y2, y3, z1, z2, z3);
Braced Initializer List Format
Format a braced initializer list exactly like you would format a function call in its place.
If the braced list follows a name (e.g. a type or
variable name), format as if the {}
were the
parentheses of a function call with that name. If there
is no name, assume a zero-length name.
// Examples of braced init list on a single line. return {foo, bar}; functioncall({foo, bar}); pair<int, int> p{foo, bar}; // When you have to wrap. SomeFunction( {"assume a zero-length name before {"}, some_other_function_parameter); SomeType variable{ some, other, values, {"assume a zero-length name before {"}, SomeOtherType{ "Very long string requiring the surrounding breaks.", some, other values}, SomeOtherType{"Slightly shorter string", some, other, values}}; SomeType variable{ "This is too long to fit all in one line"}; MyType m = { // Here, you could also break before {. superlongvariablename1, superlongvariablename2, {short, interior, list}, {interiorwrappinglist, interiorwrappinglist2}};
Conditionals
Prefer no spaces inside parentheses. The if
and else
keywords belong on separate lines.
There are two acceptable formats for a basic conditional statement. One includes spaces between the parentheses and the condition, and one does not.
The most common form is without spaces. Either is fine, but be consistent. If you are modifying a file, use the format that is already present. If you are writing new code, use the format that the other files in that directory or project use. If in doubt and you have no personal preference, do not add the spaces.
if (condition) { // no spaces inside parentheses ... // 2 space indent. } else if (...) { // The else goes on the same line as the closing brace. ... } else { ... }
If you prefer you may add spaces inside the parentheses:
if ( condition ) { // spaces inside parentheses - rare ... // 2 space indent. } else { // The else goes on the same line as the closing brace. ... }
Note that in all cases you must have a space between
the if
and the open parenthesis. You must
also have a space between the close parenthesis and the
curly brace, if you're using one.
if(condition) { // Bad - space missing after IF. if (condition){ // Bad - space missing before {. if(condition){ // Doubly bad.
if (condition) { // Good - proper space after IF and before {.
Short conditional statements may be written on one
line if this enhances readability. You may use this only
when the line is brief and the statement does not use the
else
clause.
if (x == kFoo) return new Foo(); if (x == kBar) return new Bar();
This is not allowed when the if statement has an
else
:
// Not allowed - IF statement on one line when there is an ELSE clause if (x) DoThis(); else DoThat();
In general, curly braces are not required for
single-line statements, but they are allowed if you like
them; conditional or loop statements with complex
conditions or statements may be more readable with curly
braces. Some
projects require that an
if
must always always have an accompanying
brace.
if (condition) DoSomething(); // 2 space indent. if (condition) { DoSomething(); // 2 space indent. }
However, if one part of an
if
-else
statement uses curly
braces, the other part must too:
// Not allowed - curly on IF but not ELSE if (condition) { foo; } else bar; // Not allowed - curly on ELSE but not IF if (condition) foo; else { bar; }
// Curly braces around both IF and ELSE required because // one of the clauses used braces. if (condition) { foo; } else { bar; }
Loops and Switch Statements
Switch statements may use braces for blocks. Annotate
non-trivial fall-through between cases.
Braces are optional for single-statement loops.
Empty loop bodies should use {}
or continue
.
case
blocks in switch
statements can have curly braces or not, depending on
your preference. If you do include curly braces they
should be placed as shown below.
If not conditional on an enumerated value, switch
statements should always have a default
case
(in the case of an enumerated value, the compiler will
warn you if any values are not handled). If the default
case should never execute, simply
assert
:
switch (var) { case 0: { // 2 space indent ... // 4 space indent break; } case 1: { ... break; } default: { assert(false); } }
Braces are optional for single-statement loops.
for (int i = 0; i < kSomeNumber; ++i) printf("I love you\n"); for (int i = 0; i < kSomeNumber; ++i) { printf("I take it back\n"); }
Empty loop bodies should use {}
or
continue
, but not a single semicolon.
while (condition) { // Repeat test until it returns false. } for (int i = 0; i < kSomeNumber; ++i) {} // Good - empty body. while (condition) continue; // Good - continue indicates no logic.
while (condition); // Bad - looks like part of do/while loop.
Pointer and Reference Expressions
No spaces around period or arrow. Pointer operators do not have trailing spaces.
The following are examples of correctly-formatted pointer and reference expressions:
x = *p; p = &x; x = r.y; x = r->y;
Note that:
- There are no spaces around the period or arrow when accessing a member.
- Pointer operators have no space after the
*
or&
.
When declaring a pointer variable or argument, you may place the asterisk adjacent to either the type or to the variable name:
// These are fine, space preceding. char *c; const string &str; // These are fine, space following. char* c; // but remember to do "char* c, *d, *e, ...;"! const string& str;
char * c; // Bad - spaces on both sides of * const string & str; // Bad - spaces on both sides of &
You should do this consistently within a single file, so, when modifying an existing file, use the style in that file.
Boolean Expressions
When you have a boolean expression that is longer than the standard line length, be consistent in how you break up the lines.
In this example, the logical AND operator is always at the end of the lines:
if (this_one_thing > this_other_thing && a_third_thing == a_fourth_thing && yet_another && last_one) { ... }
Note that when the code wraps in this example, both of
the &&
logical AND operators are at
the end of the line. This is more common in Google code,
though wrapping all operators at the beginning of the
line is also allowed. Feel free to insert extra
parentheses judiciously because they can be very helpful
in increasing readability when used
appropriately. Also note that you should always use
the punctuation operators, such as
&&
and ~
, rather than
the word operators, such as and
and
compl
.
Return Values
Do not needlessly surround the return
expression with parentheses.
Use parentheses in return expr;
only
where you would use them in x = expr;
.
return result; // No parentheses in the simple case. // Parentheses OK to make a complex expression more readable. return (some_long_condition && another_condition);
return (value); // You wouldn't write var = (value); return(result); // return is not a function!
Variable and Array Initialization
Your choice of =
, ()
, or
{}
.
You may choose between =
,
()
, and {}
; the following are
all correct:
int x = 3; int x(3); int x{3}; string name = "Some Name"; string name("Some Name"); string name{"Some Name"};
Be careful when using a braced initialization list {...}
on a type with an std::initializer_list
constructor.
A nonempty braced-init-list prefers the
std::initializer_list
constructor whenever
possible. Note that empty braces {}
are special, and
will call a default constructor if available. To force the
non-std::initializer_list
constructor, use parentheses
instead of braces.
vector<int> v(100, 1); // A vector of 100 1s. vector<int> v{100, 1}; // A vector of 100, 1.
Also, the brace form prevents narrowing of integral types. This can prevent some types of programming errors.
int pi(3.14); // OK -- pi == 3. int pi{3.14}; // Compile error: narrowing conversion.
Preprocessor Directives
The hash mark that starts a preprocessor directive should always be at the beginning of the line.
Even when preprocessor directives are within the body of indented code, the directives should start at the beginning of the line.
// Good - directives at beginning of line if (lopsided_score) { #if DISASTER_PENDING // Correct -- Starts at beginning of line DropEverything(); # if NOTIFY // OK but not required -- Spaces after # NotifyClient(); # endif #endif BackToNormal(); }
// Bad - indented directives if (lopsided_score) { #if DISASTER_PENDING // Wrong! The "#if" should be at beginning of line DropEverything(); #endif // Wrong! Do not indent "#endif" BackToNormal(); }
Class Format
Sections in public
, protected
and
private
order, each indented one space.
The basic format for a class declaration (lacking the comments, see Class Comments for a discussion of what comments are needed) is:
class MyClass : public OtherClass { public: // Note the 1 space indent! MyClass(); // Regular 2 space indent. explicit MyClass(int var); ~MyClass() {} void SomeFunction(); void SomeFunctionThatDoesNothing() { } void set_some_var(int var) { some_var_ = var; } int some_var() const { return some_var_; } private: bool SomeInternalFunction(); int some_var_; int some_other_var_; };
Things to note:
- Any base class name should be on the same line as the subclass name, subject to the 80-column limit.
- The
public:
,protected:
, andprivate:
keywords should be indented one space. - Except for the first instance, these keywords should be preceded by a blank line. This rule is optional in small classes.
- Do not leave a blank line after these keywords.
- The
public
section should be first, followed by theprotected
and finally theprivate
section. - See Declaration Order for rules on ordering declarations within each of these sections.
Constructor Initializer Lists
Constructor initializer lists can be all on one line or with subsequent lines indented four spaces.
There are two acceptable formats for initializer lists:
// When it all fits on one line: MyClass::MyClass(int var) : some_var_(var), some_other_var_(var + 1) {}
or
// When it requires multiple lines, indent 4 spaces, putting the colon on // the first initializer line: MyClass::MyClass(int var) : some_var_(var), // 4 space indent some_other_var_(var + 1) { // lined up ... DoSomething(); ... }
Namespace Formatting
The contents of namespaces are not indented.
Namespaces do not add an extra level of indentation. For example, use:
namespace { void foo() { // Correct. No extra indentation within namespace. ... } } // namespace
Do not indent within a namespace:
namespace { // Wrong. Indented when it should not be. void foo() { ... } } // namespace
When declaring nested namespaces, put each namespace on its own line.
namespace foo { namespace bar {
Horizontal Whitespace
Use of horizontal whitespace depends on location. Never put trailing whitespace at the end of a line.
General
void f(bool b) { // Open braces should always have a space before them. ... int i = 0; // Semicolons usually have no space before them. // Spaces inside braces for braced-init-list are optional. If you use them, // put them on both sides! int x[] = { 0 }; int x[] = {0}; // Spaces around the colon in inheritance and initializer lists. class Foo : public Bar { public: // For inline function implementations, put spaces between the braces // and the implementation itself. Foo(int b) : Bar(), baz_(b) {} // No spaces inside empty braces. void Reset() { baz_ = 0; } // Spaces separating braces from implementation. ...
Adding trailing whitespace can cause extra work for others editing the same file, when they merge, as can removing existing trailing whitespace. So: Don't introduce trailing whitespace. Remove it if you're already changing that line, or do it in a separate clean-up operation (preferably when no-one else is working on the file).
Loops and Conditionals
if (b) { // Space after the keyword in conditions and loops. } else { // Spaces around else. } while (test) {} // There is usually no space inside parentheses. switch (i) { for (int i = 0; i < 5; ++i) { // Loops and conditions may have spaces inside parentheses, but this // is rare. Be consistent. switch ( i ) { if ( test ) { for ( int i = 0; i < 5; ++i ) { // For loops always have a space after the semicolon. They may have a space // before the semicolon, but this is rare. for ( ; i < 5 ; ++i) { ... // Range-based for loops always have a space before and after the colon. for (auto x : counts) { ... } switch (i) { case 1: // No space before colon in a switch case. ... case 2: break; // Use a space after a colon if there's code after it.
Operators
// Assignment operators always have spaces around them. x = 0; // Other binary operators usually have spaces around them, but it's // OK to remove spaces around factors. Parentheses should have no // internal padding. v = w * x + y / z; v = w*x + y/z; v = w * (x + z); // No spaces separating unary operators and their arguments. x = -5; ++x; if (x && !y) ...
Templates and Casts
// No spaces inside the angle brackets (< and >), before // <, or between >( in a cast vector<string> x; y = static_cast<char*>(x); // Spaces between type and pointer are OK, but be consistent. vector<char *> x; set<list<string>> x; // Permitted in C++11 code. set<list<string> > x; // C++03 required a space in > >. // You may optionally use symmetric spacing in < <. set< list<string> > x;
Vertical Whitespace
Minimize use of vertical whitespace.
This is more a principle than a rule: don't use blank lines when you don't have to. In particular, don't put more than one or two blank lines between functions, resist starting functions with a blank line, don't end functions with a blank line, and be discriminating with your use of blank lines inside functions.
The basic principle is: The more code that fits on one screen, the easier it is to follow and understand the control flow of the program. Of course, readability can suffer from code being too dense as well as too spread out, so use your judgement. But in general, minimize use of vertical whitespace.
Some rules of thumb to help when blank lines may be useful:
- Blank lines at the beginning or end of a function very rarely help readability.
- Blank lines inside a chain of if-else blocks may well help readability.
Exceptions to the Rules
The coding conventions described above are mandatory. However, like all good rules, these sometimes have exceptions, which we discuss here.
Existing Non-conformant Code
You may diverge from the rules when dealing with code that does not conform to this style guide.
If you find yourself modifying code that was written to specifications other than those presented by this guide, you may have to diverge from these rules in order to stay consistent with the local conventions in that code. If you are in doubt about how to do this, ask the original author or the person currently responsible for the code. Remember that consistency includes local consistency, too.
Windows Code
Windows programmers have developed their own set of coding conventions, mainly derived from the conventions in Windows headers and other Microsoft code. We want to make it easy for anyone to understand your code, so we have a single set of guidelines for everyone writing C++ on any platform.
It is worth reiterating a few of the guidelines that you might forget if you are used to the prevalent Windows style:
- Do not use Hungarian notation (for example, naming
an integer
iNum
). Use the Google naming conventions, including the.cc
extension for source files. - Windows defines many of its own synonyms for
primitive types, such as
DWORD
,HANDLE
, etc. It is perfectly acceptable, and encouraged, that you use these types when calling Windows API functions. Even so, keep as close as you can to the underlying C++ types. For example, useconst TCHAR *
instead ofLPCTSTR
. - When compiling with Microsoft Visual C++, set the compiler to warning level 3 or higher, and treat all warnings as errors.
- Do not use
#pragma once
; instead use the standard Google include guards. The path in the include guards should be relative to the top of your project tree. - In fact, do not use any nonstandard extensions,
like
#pragma
and__declspec
, unless you absolutely must. Using__declspec(dllimport)
and__declspec(dllexport)
is allowed; however, you must use them through macros such asDLLIMPORT
andDLLEXPORT
, so that someone can easily disable the extensions if they share the code.
However, there are just a few rules that we occasionally need to break on Windows:
- Normally we forbid the use of multiple implementation inheritance; however, it is required when using COM and some ATL/WTL classes. You may use multiple implementation inheritance to implement COM or ATL/WTL classes and interfaces.
- Although you should not use exceptions in your own
code, they are used extensively in the ATL and some
STLs, including the one that comes with Visual C++.
When using the ATL, you should define
_ATL_NO_EXCEPTIONS
to disable exceptions. You should investigate whether you can also disable exceptions in your STL, but if not, it is OK to turn on exceptions in the compiler. (Note that this is only to get the STL to compile. You should still not write exception handling code yourself.) - The usual way of working with precompiled headers
is to include a header file at the top of each source
file, typically with a name like
StdAfx.h
orprecompile.h
. To make your code easier to share with other projects, avoid including this file explicitly (except inprecompile.cc
), and use the/FI
compiler option to include the file automatically. - Resource headers, which are usually named
resource.h
and contain only macros, do not need to conform to these style guidelines.
Parting Words
Use common sense and BE CONSISTENT.
If you are editing code, take a few minutes to look at the
code around you and determine its style. If they use spaces
around their if
clauses, you should, too. If their
comments have little boxes of stars around them, make your
comments have little boxes of stars around them too.
The point of having style guidelines is to have a common vocabulary of coding so people can concentrate on what you are saying, rather than on how you are saying it. We present global style rules here so people know the vocabulary. But local style is also important. If code you add to a file looks drastically different from the existing code around it, the discontinuity throws readers out of their rhythm when they go to read it. Try to avoid this.
OK, enough writing about writing code; the code itself is much more interesting. Have fun!
Revision 4.45